Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 14 x^{2} + 2209 x^{4}$ |
Frobenius angles: | $\pm0.273792447521$, $\pm0.726207552479$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{5})\) |
Galois group: | $C_2^2$ |
Jacobians: | $184$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2224$ | $4946176$ | $10779125296$ | $23852518281216$ | $52599132547638064$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $48$ | $2238$ | $103824$ | $4888126$ | $229345008$ | $10779035262$ | $506623120464$ | $23811270529918$ | $1119130473102768$ | $52599132859446078$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 184 curves (of which all are hyperelliptic):
- $y^2=15 x^6+36 x^5+18 x^4+35 x^3+37 x^2+43 x+22$
- $y^2=28 x^6+39 x^5+43 x^4+34 x^3+44 x^2+27 x+16$
- $y^2=9 x^6+40 x^5+11 x^4+42 x^2+4 x+26$
- $y^2=45 x^6+12 x^5+8 x^4+22 x^2+20 x+36$
- $y^2=11 x^6+5 x^5+3 x^4+29 x^3+10 x^2+19 x$
- $y^2=2 x^6+11 x^5+44 x^4+39 x^3+10 x^2+29 x+37$
- $y^2=10 x^6+8 x^5+32 x^4+7 x^3+3 x^2+4 x+44$
- $y^2=4 x^6+37 x^5+15 x^4+17 x^3+14 x^2+8 x+39$
- $y^2=11 x^6+21 x^5+21 x^4+22 x^3+42 x+6$
- $y^2=6 x^6+40 x^5+28 x^4+37 x^3+20 x^2+29 x+30$
- $y^2=30 x^6+12 x^5+46 x^4+44 x^3+6 x^2+4 x+9$
- $y^2=14 x^6+21 x^5+45 x^4+8 x^3+10 x^2+14 x+1$
- $y^2=38 x^6+13 x^5+33 x^4+4 x^3+34 x^2+16 x+35$
- $y^2=36 x^6+30 x^5+17 x^4+18 x^3+28 x^2+36 x+33$
- $y^2=39 x^6+9 x^5+38 x^4+43 x^3+46 x^2+39 x+24$
- $y^2=26 x^6+33 x^5+16 x^4+3 x^3+46 x^2+19 x+35$
- $y^2=13 x^6+45 x^5+16 x^4+11 x^3+20 x^2+19 x+11$
- $y^2=18 x^6+37 x^5+33 x^4+8 x^3+6 x^2+x+8$
- $y^2=5 x^6+40 x^5+35 x^4+45 x^3+18 x^2+43 x+36$
- $y^2=33 x^6+12 x^5+13 x^4+4 x^3+37 x^2+16 x+24$
- and 164 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47^{2}}$.
Endomorphism algebra over $\F_{47}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{5})\). |
The base change of $A$ to $\F_{47^{2}}$ is 1.2209.o 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-15}) \)$)$ |
Base change
This is a primitive isogeny class.