| L(s) = 1 | + 4-s + 5-s + 9-s + 11-s + 16-s + 20-s − 8·23-s + 25-s − 8·31-s + 36-s + 8·37-s + 44-s + 45-s + 8·47-s − 6·49-s + 8·53-s + 55-s + 64-s + 16·67-s − 16·71-s + 80-s + 81-s − 4·89-s − 8·92-s − 32·97-s + 99-s + 100-s + ⋯ |
| L(s) = 1 | + 1/2·4-s + 0.447·5-s + 1/3·9-s + 0.301·11-s + 1/4·16-s + 0.223·20-s − 1.66·23-s + 1/5·25-s − 1.43·31-s + 1/6·36-s + 1.31·37-s + 0.150·44-s + 0.149·45-s + 1.16·47-s − 6/7·49-s + 1.09·53-s + 0.134·55-s + 1/8·64-s + 1.95·67-s − 1.89·71-s + 0.111·80-s + 1/9·81-s − 0.423·89-s − 0.834·92-s − 3.24·97-s + 0.100·99-s + 1/10·100-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5989500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5989500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.02764047786468893410061159524, −6.69267633781013070705798761515, −6.12074794069477526714514734153, −5.91961812321784426317642770274, −5.49576710021470778026187255024, −5.14879288917095349616097436684, −4.35683989133678359819980332606, −4.18742320705109712116698866506, −3.70472791311396595039713507536, −3.19004506367461730252129162130, −2.47151900154141523044882188691, −2.24708515278452201128469510182, −1.59578679051224544878361778261, −1.07427271147761036769336701657, 0,
1.07427271147761036769336701657, 1.59578679051224544878361778261, 2.24708515278452201128469510182, 2.47151900154141523044882188691, 3.19004506367461730252129162130, 3.70472791311396595039713507536, 4.18742320705109712116698866506, 4.35683989133678359819980332606, 5.14879288917095349616097436684, 5.49576710021470778026187255024, 5.91961812321784426317642770274, 6.12074794069477526714514734153, 6.69267633781013070705798761515, 7.02764047786468893410061159524