Properties

Label 2.31.i_ck
Base field $\F_{31}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{31}$
Dimension:  $2$
L-polynomial:  $( 1 + 31 x^{2} )( 1 + 8 x + 31 x^{2} )$
  $1 + 8 x + 62 x^{2} + 248 x^{3} + 961 x^{4}$
Frobenius angles:  $\pm0.5$, $\pm0.755134921237$
Angle rank:  $1$ (numerical)
Jacobians:  $108$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1280$ $983040$ $880651520$ $852885504000$ $819394959392000$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $40$ $1022$ $29560$ $923518$ $28621000$ $887569022$ $27512820760$ $852887358718$ $26439630408040$ $819628335042302$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 108 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{31^{2}}$.

Endomorphism algebra over $\F_{31}$
The isogeny class factors as 1.31.a $\times$ 1.31.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{31}$
The base change of $A$ to $\F_{31^{2}}$ is 1.961.ac $\times$ 1.961.ck. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.31.ai_ck$2$(not in LMFDB)