Invariants
| Base field: | $\F_{37}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 10 x + 37 x^{2} )( 1 + 2 x + 37 x^{2} )$ |
| $1 - 8 x + 54 x^{2} - 296 x^{3} + 1369 x^{4}$ | |
| Frobenius angles: | $\pm0.192861133077$, $\pm0.552568456711$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $186$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1120$ | $1935360$ | $2560536160$ | $3512291328000$ | $4810581264949600$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $30$ | $1414$ | $50550$ | $1874062$ | $69372750$ | $2565871126$ | $94931592870$ | $3512478024478$ | $129961747129470$ | $4808584226024614$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 186 curves (of which all are hyperelliptic):
- $y^2=35 x^6+31 x^5+31 x^4+3 x^3+2 x^2+26 x$
- $y^2=8 x^6+16 x^5+10 x^4+7 x^3+13 x^2+19 x+15$
- $y^2=25 x^6+33 x^5+23 x^4+21 x^3+23 x^2+33 x+25$
- $y^2=10 x^6+8 x^5+30 x^4+3 x^3+30 x^2+8 x+10$
- $y^2=2 x^6+35 x^5+13 x^4+32 x^3+13 x+8$
- $y^2=24 x^6+21 x^5+10 x^4+11 x^3+34 x^2+34 x+5$
- $y^2=16 x^6+30 x^5+17 x^4+2 x^3+17 x^2+30 x+16$
- $y^2=3 x^6+4 x^5+13 x^4+24 x^3+29 x^2+9 x+27$
- $y^2=33 x^6+4 x^5+29 x^4+8 x^3+23 x^2+26 x+20$
- $y^2=21 x^5+16 x^4+2 x^3+16 x^2+21 x$
- $y^2=13 x^6+35 x^4+24 x^3+x^2+21 x$
- $y^2=20 x^6+29 x^5+2 x^4+2 x^3+16 x^2+9 x+25$
- $y^2=25 x^5+6 x^4+17 x^3+21 x^2+32 x+6$
- $y^2=18 x^6+5 x^5+5 x^4+7 x^2+15 x+32$
- $y^2=x^6+21 x^5+28 x^4+10 x^3+30 x^2+4 x+1$
- $y^2=23 x^6+5 x^5+13 x^4+14 x^3+33 x^2+5 x+13$
- $y^2=16 x^6+26 x^5+34 x^4+30 x^3+35 x^2+7 x+14$
- $y^2=23 x^6+6 x^5+13 x^4+34 x^3+6 x^2+23 x+3$
- $y^2=13 x^6+36 x^5+12 x^4+9 x^3+32 x^2+34 x+2$
- $y^2=23 x^6+30 x^5+18 x^4+15 x^3+8 x^2+18 x+32$
- and 166 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$| The isogeny class factors as 1.37.ak $\times$ 1.37.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.