Invariants
| Base field: | $\F_{29}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 30 x^{2} + 841 x^{4}$ |
| Frobenius angles: | $\pm0.336520527560$, $\pm0.663479472440$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{7}, \sqrt{-22})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $44$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $872$ | $760384$ | $594774632$ | $501354628096$ | $420707250157352$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $30$ | $902$ | $24390$ | $708846$ | $20511150$ | $594725942$ | $17249876310$ | $500248019038$ | $14507145975870$ | $420707267014502$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 44 curves (of which all are hyperelliptic):
- $y^2=18 x^6+20 x^5+20 x^4+16 x^3+20 x^2+20 x$
- $y^2=7 x^6+11 x^5+11 x^4+3 x^3+11 x^2+11 x$
- $y^2=16 x^6+25 x^5+8 x^4+15 x^3+23 x^2+13 x+9$
- $y^2=3 x^6+21 x^5+16 x^4+x^3+17 x^2+26 x+18$
- $y^2=25 x^6+7 x^5+5 x^4+17 x^3+x^2+16 x+14$
- $y^2=14 x^6+14 x^5+6 x^4+5 x^3+24 x^2+16 x+25$
- $y^2=28 x^6+28 x^5+12 x^4+10 x^3+19 x^2+3 x+21$
- $y^2=7 x^6+9 x^5+16 x^4+13 x^3+17 x^2+23 x+10$
- $y^2=26 x^6+17 x^5+14 x^4+6 x^3+24 x^2+11 x+9$
- $y^2=23 x^6+5 x^5+28 x^4+12 x^3+19 x^2+22 x+18$
- $y^2=10 x^6+14 x^5+9 x^4+25 x^3+2 x^2+10 x+20$
- $y^2=10 x^6+21 x^5+24 x^4+22 x^3+25 x^2+8 x+27$
- $y^2=8 x^6+23 x^5+16 x^4+27 x^3+28 x^2+27 x+6$
- $y^2=16 x^6+17 x^5+3 x^4+25 x^3+27 x^2+25 x+12$
- $y^2=26 x^6+9 x^5+20 x^4+11 x^3+x^2+x+9$
- $y^2=23 x^6+18 x^5+11 x^4+22 x^3+2 x^2+2 x+18$
- $y^2=25 x^6+14 x^5+8 x^4+14 x^3+5 x^2+10 x+21$
- $y^2=24 x^6+8 x^5+11 x^4+10 x^3+7 x^2+27 x+15$
- $y^2=5 x^6+8 x^5+4 x^4+25 x^3+2 x^2+27 x+1$
- $y^2=7 x^5+21 x^4+8 x^3+5 x^2+5 x$
- and 24 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29^{2}}$.
Endomorphism algebra over $\F_{29}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{7}, \sqrt{-22})\). |
| The base change of $A$ to $\F_{29^{2}}$ is 1.841.be 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-154}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.29.a_abe | $4$ | (not in LMFDB) |