Invariants
| Base field: | $\F_{47}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 12 x + 47 x^{2} )( 1 + 4 x + 47 x^{2} )$ |
| $1 - 8 x + 46 x^{2} - 376 x^{3} + 2209 x^{4}$ | |
| Frobenius angles: | $\pm0.160736311100$, $\pm0.594230866676$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $186$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1872$ | $4942080$ | $10723791312$ | $23812522905600$ | $52611718059091152$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $40$ | $2238$ | $103288$ | $4879934$ | $229399880$ | $10779379326$ | $506623187096$ | $23811299726206$ | $1119130515003496$ | $52599131632857918$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 186 curves (of which all are hyperelliptic):
- $y^2=10 x^6+41 x^5+18 x^4+8 x^3+22 x^2+32 x+15$
- $y^2=43 x^6+2 x^5+12 x^4+22 x^3+9 x^2+25 x+1$
- $y^2=2 x^6+36 x^5+20 x^4+38 x^3+38 x^2+6 x+35$
- $y^2=29 x^6+10 x^5+11 x^4+24 x^3+32 x^2+42 x+37$
- $y^2=24 x^6+28 x^4+15 x^3+40 x^2+x+46$
- $y^2=41 x^6+3 x^5+24 x^4+43 x^3+3 x^2+27 x+40$
- $y^2=4 x^6+7 x^5+34 x^4+36 x^3+13 x^2+42 x+44$
- $y^2=43 x^6+5 x^5+15 x^4+37 x^2+10 x+43$
- $y^2=31 x^6+16 x^5+10 x^4+19 x^3+9 x^2+29 x+26$
- $y^2=2 x^6+46 x^5+10 x^4+11 x^3+11 x^2+16 x+36$
- $y^2=36 x^6+20 x^5+31 x^4+8 x^3+43 x^2+16 x+2$
- $y^2=43 x^6+6 x^5+30 x^4+21 x^3+12 x^2+38 x+43$
- $y^2=43 x^6+10 x^5+x^4+11 x^3+x^2+10 x+43$
- $y^2=46 x^6+11 x^5+42 x^4+44 x^3+8 x^2+40 x+42$
- $y^2=22 x^6+46 x^5+44 x^4+40 x^3+20 x^2+41 x+45$
- $y^2=43 x^6+3 x^5+23 x^4+2 x^3+35 x^2+13 x+41$
- $y^2=11 x^6+19 x^5+24 x^4+41 x^3+18 x^2+2 x+46$
- $y^2=39 x^6+28 x^5+6 x^4+21 x^3+34 x^2+34 x+13$
- $y^2=11 x^6+11 x^5+7 x^4+31 x^3+9 x+38$
- $y^2=6 x^6+30 x^5+27 x^4+20 x^3+38 x^2+32 x+45$
- and 166 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$| The isogeny class factors as 1.47.am $\times$ 1.47.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.47.aq_fm | $2$ | (not in LMFDB) |
| 2.47.i_bu | $2$ | (not in LMFDB) |
| 2.47.q_fm | $2$ | (not in LMFDB) |