Properties

Label 2.47.ai_bu
Base field $\F_{47}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{47}$
Dimension:  $2$
L-polynomial:  $( 1 - 12 x + 47 x^{2} )( 1 + 4 x + 47 x^{2} )$
  $1 - 8 x + 46 x^{2} - 376 x^{3} + 2209 x^{4}$
Frobenius angles:  $\pm0.160736311100$, $\pm0.594230866676$
Angle rank:  $2$ (numerical)
Jacobians:  $186$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1872$ $4942080$ $10723791312$ $23812522905600$ $52611718059091152$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $40$ $2238$ $103288$ $4879934$ $229399880$ $10779379326$ $506623187096$ $23811299726206$ $1119130515003496$ $52599131632857918$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 186 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{47}$.

Endomorphism algebra over $\F_{47}$
The isogeny class factors as 1.47.am $\times$ 1.47.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.47.aq_fm$2$(not in LMFDB)
2.47.i_bu$2$(not in LMFDB)
2.47.q_fm$2$(not in LMFDB)