Invariants
| Base field: | $\F_{97}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 14 x + 97 x^{2} )( 1 + 18 x + 97 x^{2} )$ |
| $1 + 32 x + 446 x^{2} + 3104 x^{3} + 9409 x^{4}$ | |
| Frobenius angles: | $\pm0.751640801674$, $\pm0.866875061252$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $62$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $12992$ | $87306240$ | $832301312192$ | $7839269196595200$ | $73740467446036137152$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $130$ | $9278$ | $911938$ | $88550014$ | $8587113730$ | $832973533886$ | $80798279155906$ | $7837433590848766$ | $760231058526694786$ | $73742412697292441918$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 62 curves (of which all are hyperelliptic):
- $y^2=33 x^6+82 x^5+47 x^4+30 x^3+34 x^2+61 x+72$
- $y^2=83 x^6+59 x^5+49 x^4+48 x^3+33 x^2+51 x+71$
- $y^2=26 x^6+57 x^5+11 x^4+51 x^3+11 x^2+57 x+26$
- $y^2=24 x^6+11 x^5+79 x^4+30 x^3+79 x^2+11 x+24$
- $y^2=43 x^6+54 x^5+88 x^4+52 x^3+18 x^2+86 x+17$
- $y^2=59 x^6+16 x^5+2 x^4+57 x^3+2 x^2+16 x+59$
- $y^2=92 x^6+37 x^5+24 x^4+63 x^3+48 x^2+51 x+57$
- $y^2=43 x^6+18 x^5+87 x^4+72 x^3+11 x^2+72 x+29$
- $y^2=31 x^6+55 x^5+62 x^4+15 x^3+72 x^2+34 x+54$
- $y^2=95 x^6+71 x^5+74 x^4+80 x^3+14 x^2+87 x+66$
- $y^2=79 x^6+87 x^5+32 x^4+54 x^3+70 x^2+59 x+8$
- $y^2=7 x^6+15 x^5+49 x^4+71 x^3+49 x^2+15 x+7$
- $y^2=61 x^6+42 x^5+65 x^4+88 x^3+65 x^2+42 x+61$
- $y^2=62 x^6+55 x^5+61 x^4+80 x^3+61 x^2+55 x+62$
- $y^2=8 x^6+33 x^5+87 x^4+4 x^3+85 x^2+78 x+44$
- $y^2=52 x^6+54 x^5+71 x^4+5 x^3+87 x^2+43 x+77$
- $y^2=45 x^6+96 x^5+5 x^4+76 x^3+90 x^2+64 x+55$
- $y^2=25 x^6+19 x^5+82 x^4+8 x^3+41 x^2+15 x+18$
- $y^2=5 x^6+87 x^5+90 x^4+55 x^3+90 x^2+87 x+5$
- $y^2=48 x^6+59 x^5+20 x^4+56 x^3+17 x^2+71 x+32$
- and 42 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$| The isogeny class factors as 1.97.o $\times$ 1.97.s and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.