# Stored data for abelian variety isogeny class 2.97.bg_re, downloaded from the LMFDB on 24 January 2026. {"abvar_count": 12992, "abvar_counts": [12992, 87306240, 832301312192, 7839269196595200, 73740467446036137152, 693843634574731831357440, 6528362344580746589286024896, 61425365318616553590832260710400, 577951262445829905132608419510447808, 5437943429842635066797110091532325171200], "abvar_counts_str": "12992 87306240 832301312192 7839269196595200 73740467446036137152 693843634574731831357440 6528362344580746589286024896 61425365318616553590832260710400 577951262445829905132608419510447808 5437943429842635066797110091532325171200 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.751640801674471, 0.866875061252343], "center_dim": 4, "cohen_macaulay_max": 3, "curve_count": 130, "curve_counts": [130, 9278, 911938, 88550014, 8587113730, 832973533886, 80798279155906, 7837433590848766, 760231058526694786, 73742412697292441918], "curve_counts_str": "130 9278 911938 88550014 8587113730 832973533886 80798279155906 7837433590848766 760231058526694786 73742412697292441918 ", "curves": ["y^2=33*x^6+82*x^5+47*x^4+30*x^3+34*x^2+61*x+72", "y^2=83*x^6+59*x^5+49*x^4+48*x^3+33*x^2+51*x+71", "y^2=26*x^6+57*x^5+11*x^4+51*x^3+11*x^2+57*x+26", "y^2=24*x^6+11*x^5+79*x^4+30*x^3+79*x^2+11*x+24", "y^2=43*x^6+54*x^5+88*x^4+52*x^3+18*x^2+86*x+17", "y^2=59*x^6+16*x^5+2*x^4+57*x^3+2*x^2+16*x+59", "y^2=92*x^6+37*x^5+24*x^4+63*x^3+48*x^2+51*x+57", "y^2=43*x^6+18*x^5+87*x^4+72*x^3+11*x^2+72*x+29", "y^2=31*x^6+55*x^5+62*x^4+15*x^3+72*x^2+34*x+54", "y^2=95*x^6+71*x^5+74*x^4+80*x^3+14*x^2+87*x+66", "y^2=79*x^6+87*x^5+32*x^4+54*x^3+70*x^2+59*x+8", "y^2=7*x^6+15*x^5+49*x^4+71*x^3+49*x^2+15*x+7", "y^2=61*x^6+42*x^5+65*x^4+88*x^3+65*x^2+42*x+61", "y^2=62*x^6+55*x^5+61*x^4+80*x^3+61*x^2+55*x+62", "y^2=8*x^6+33*x^5+87*x^4+4*x^3+85*x^2+78*x+44", "y^2=52*x^6+54*x^5+71*x^4+5*x^3+87*x^2+43*x+77", "y^2=45*x^6+96*x^5+5*x^4+76*x^3+90*x^2+64*x+55", "y^2=25*x^6+19*x^5+82*x^4+8*x^3+41*x^2+15*x+18", "y^2=5*x^6+87*x^5+90*x^4+55*x^3+90*x^2+87*x+5", "y^2=48*x^6+59*x^5+20*x^4+56*x^3+17*x^2+71*x+32", "y^2=30*x^6+2*x^5+32*x^4+42*x^3+47*x^2+10*x+75", "y^2=60*x^6+79*x^5+75*x^4+37*x^3+24*x^2+52*x+72", "y^2=64*x^6+73*x^5+5*x^4+32*x^3+10*x^2+x+27", "y^2=96*x^6+22*x^5+38*x^4+18*x^3+38*x^2+22*x+96", "y^2=44*x^6+13*x^5+32*x^4+78*x^3+50*x^2+34*x+94", "y^2=85*x^6+9*x^5+18*x^4+18*x^3+18*x^2+9*x+85", "y^2=51*x^6+14*x^5+50*x^4+92*x^3+50*x^2+14*x+51", "y^2=2*x^6+94*x^5+33*x^4+81*x^3+33*x^2+94*x+2", "y^2=49*x^6+50*x^5+69*x^3+50*x+49", "y^2=61*x^6+20*x^5+32*x^4+26*x^3+75*x^2+22*x+79", "y^2=6*x^6+29*x^5+9*x^4+40*x^3+93*x^2+68*x+35", "y^2=76*x^6+29*x^5+39*x^4+x^3+39*x^2+29*x+76", "y^2=33*x^6+88*x^5+5*x^4+55*x^3+5*x^2+88*x+33", "y^2=41*x^6+50*x^5+24*x^4+38*x^3+24*x^2+50*x+41", "y^2=85*x^6+58*x^5+82*x^4+84*x^3+31*x^2+17*x+6", "y^2=36*x^6+74*x^5+93*x^4+74*x^3+55*x^2+75*x+47", "y^2=95*x^6+78*x^5+95*x^4+24*x^3+8*x^2+84*x+31", "y^2=36*x^6+57*x^5+23*x^4+76*x^3+71*x^2+38*x+53", "y^2=72*x^6+28*x^5+64*x^4+94*x^3+27*x^2+46*x+4", "y^2=23*x^6+7*x^5+45*x^4+16*x^3+45*x^2+7*x+23", "y^2=7*x^6+68*x^5+60*x^4+30*x^3+59*x^2+56*x+12", "y^2=93*x^6+68*x^5+70*x^4+12*x^3+22*x^2+84*x+11", "y^2=87*x^6+58*x^5+16*x^4+73*x^3+88*x^2+45*x+35", "y^2=73*x^6+61*x^5+7*x^4+53*x^3+7*x^2+61*x+73", "y^2=16*x^6+2*x^5+48*x^4+92*x^3+48*x^2+2*x+16", "y^2=33*x^6+78*x^5+68*x^4+19*x^3+61*x^2+68", "y^2=44*x^6+3*x^5+16*x^4+26*x^3+16*x^2+3*x+44", "y^2=3*x^6+8*x^5+77*x^4+35*x^3+77*x^2+8*x+3", "y^2=50*x^6+2*x^5+78*x^4+20*x^3+78*x^2+2*x+50", "y^2=41*x^6+87*x^5+85*x^4+71*x^3+25*x^2+11*x+2", "y^2=8*x^6+17*x^5+12*x^4+54*x^3+12*x^2+17*x+8", "y^2=17*x^6+37*x^5+44*x^4+56*x^3+44*x^2+37*x+17", "y^2=48*x^6+73*x^5+35*x^4+15*x^3+47*x^2+50*x+32", "y^2=71*x^6+21*x^5+59*x^4+64*x^3+10*x^2+56*x+71", "y^2=65*x^6+22*x^5+46*x^4+2*x^3+46*x^2+22*x+65", "y^2=4*x^6+21*x^5+73*x^4+78*x^3+11*x^2+13*x+72", "y^2=52*x^6+4*x^5+37*x^4+51*x^3+88*x^2+42*x+81", "y^2=49*x^6+78*x^5+51*x^4+81*x^3+51*x^2+78*x+49", "y^2=93*x^6+28*x^5+70*x^4+10*x^3+2*x^2+10*x+93", "y^2=33*x^6+20*x^5+47*x^4+37*x^3+47*x^2+20*x+33", "y^2=44*x^6+15*x^5+32*x^4+51*x^3+86*x^2+39*x+31", "y^2=48*x^6+63*x^5+55*x^4+33*x^3+80*x^2+90*x+4"], "dim1_distinct": 2, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 36, "g": 2, "galois_groups": ["2T1", "2T1"], "geom_dim1_distinct": 2, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1", "2T1"], "geometric_number_fields": ["2.0.3.1", "2.0.4.1"], "geometric_splitting_field": "4.0.144.1", "geometric_splitting_polynomials": [[1, 0, -1, 0, 1]], "group_structure_count": 9, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 62, "is_cyclic": false, "is_geometrically_simple": false, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 62, "label": "2.97.bg_re", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 12, "newton_coelevation": 2, "newton_elevation": 0, "noncyclic_primes": [2], "number_fields": ["2.0.3.1", "2.0.4.1"], "p": 97, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 32, 446, 3104, 9409], "poly_str": "1 32 446 3104 9409 ", "primitive_models": [], "q": 97, "real_poly": [1, 32, 252], "simple_distinct": ["1.97.o", "1.97.s"], "simple_factors": ["1.97.oA", "1.97.sA"], "simple_multiplicities": [1, 1], "singular_primes": ["2,V+17"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.144.1", "splitting_polynomials": [[1, 0, -1, 0, 1]], "twist_count": 24, "twists": [["2.97.abg_re", "2.9409.afc_bcfu", 2], ["2.97.ae_acg", "2.9409.afc_bcfu", 2], ["2.97.e_acg", "2.9409.afc_bcfu", 2], ["2.97.ab_afs", "2.912673.abci_cgxog", 3], ["2.97.x_ky", "2.912673.abci_cgxog", 3], ["2.97.aw_lu", "2.88529281.berk_rykzna", 4], ["2.97.ag_de", "2.88529281.berk_rykzna", 4], ["2.97.g_de", "2.88529281.berk_rykzna", 4], ["2.97.w_lu", "2.88529281.berk_rykzna", 4], ["2.97.abl_uq", "2.832972004929.dizua_ijtyiqqty", 6], ["2.97.ax_ky", "2.832972004929.dizua_ijtyiqqty", 6], ["2.97.an_ea", "2.832972004929.dizua_ijtyiqqty", 6], ["2.97.b_afs", "2.832972004929.dizua_ijtyiqqty", 6], ["2.97.n_ea", "2.832972004929.dizua_ijtyiqqty", 6], ["2.97.bl_uq", "2.832972004929.dizua_ijtyiqqty", 6], ["2.97.abb_ni", "2.693842360995438000295041.fomkvfxnw_mrjfimomdvyilvzkg", 12], ["2.97.an_ja", "2.693842360995438000295041.fomkvfxnw_mrjfimomdvyilvzkg", 12], ["2.97.al_bq", "2.693842360995438000295041.fomkvfxnw_mrjfimomdvyilvzkg", 12], ["2.97.ad_fy", "2.693842360995438000295041.fomkvfxnw_mrjfimomdvyilvzkg", 12], ["2.97.d_fy", "2.693842360995438000295041.fomkvfxnw_mrjfimomdvyilvzkg", 12], ["2.97.l_bq", "2.693842360995438000295041.fomkvfxnw_mrjfimomdvyilvzkg", 12], ["2.97.n_ja", "2.693842360995438000295041.fomkvfxnw_mrjfimomdvyilvzkg", 12], ["2.97.bb_ni", "2.693842360995438000295041.fomkvfxnw_mrjfimomdvyilvzkg", 12]], "weak_equivalence_count": 68, "zfv_index": 512, "zfv_index_factorization": [[2, 9]], "zfv_is_bass": false, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 12288, "zfv_singular_count": 2, "zfv_singular_primes": ["2,V+17"]}