Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 6 x + 53 x^{2} )( 1 - 2 x + 53 x^{2} )$ |
| $1 - 8 x + 118 x^{2} - 424 x^{3} + 2809 x^{4}$ | |
| Frobenius angles: | $\pm0.364801829573$, $\pm0.456138099416$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $144$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2496$ | $8386560$ | $22320911808$ | $62227604275200$ | $174862042475330496$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $46$ | $2982$ | $149926$ | $7886414$ | $418134686$ | $22164315894$ | $1174713284630$ | $62259698551966$ | $3299763555471118$ | $174887470150733382$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 144 curves (of which all are hyperelliptic):
- $y^2=22 x^6+41 x^5+30 x^4+50 x^3+22 x^2+14 x+8$
- $y^2=50 x^6+5 x^5+51 x^3+22 x+18$
- $y^2=12 x^6+15 x^5+6 x^4+47 x^3+5 x^2+50 x+10$
- $y^2=44 x^6+16 x^5+x^4+19 x^3+50 x+33$
- $y^2=2 x^6+4 x^5+35 x^4+21 x^3+36 x^2+49 x+43$
- $y^2=19 x^6+36 x^5+29 x^4+27 x^3+29 x^2+36 x+19$
- $y^2=27 x^6+34 x^5+23 x^4+39 x^3+23 x^2+34 x+27$
- $y^2=5 x^6+30 x^5+21 x^3+40 x^2+16 x+17$
- $y^2=49 x^6+26 x^5+3 x^4+30 x^3+26 x^2+39 x+1$
- $y^2=50 x^6+36 x^5+44 x^4+46 x^3+x^2+24 x+12$
- $y^2=50 x^6+13 x^5+26 x^4+45 x^3+50 x+36$
- $y^2=51 x^6+13 x^5+15 x^4+46 x^3+x^2+x+50$
- $y^2=15 x^6+14 x^5+49 x^4+9 x^3+37 x^2+12 x+6$
- $y^2=14 x^6+15 x^5+43 x^4+20 x^3+43 x^2+15 x+14$
- $y^2=3 x^6+39 x^5+11 x^4+17 x^3+47 x^2+30 x+51$
- $y^2=13 x^6+43 x^5+4 x^4+23 x^3+44 x^2+9 x+25$
- $y^2=27 x^6+31 x^5+19 x^4+33 x^3+19 x^2+31 x+27$
- $y^2=4 x^6+3 x^5+27 x^4+51 x^3+27 x^2+3 x+4$
- $y^2=27 x^6+28 x^5+9 x^4+30 x^3+44 x^2+9 x+19$
- $y^2=4 x^6+46 x^5+34 x^4+18 x^3+31 x^2+42 x+28$
- and 124 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The isogeny class factors as 1.53.ag $\times$ 1.53.ac and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.53.ae_dq | $2$ | (not in LMFDB) |
| 2.53.e_dq | $2$ | (not in LMFDB) |
| 2.53.i_eo | $2$ | (not in LMFDB) |