Properties

Label 2.53.ai_eo
Base field $\F_{53}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{53}$
Dimension:  $2$
L-polynomial:  $( 1 - 6 x + 53 x^{2} )( 1 - 2 x + 53 x^{2} )$
  $1 - 8 x + 118 x^{2} - 424 x^{3} + 2809 x^{4}$
Frobenius angles:  $\pm0.364801829573$, $\pm0.456138099416$
Angle rank:  $2$ (numerical)
Jacobians:  $144$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2496$ $8386560$ $22320911808$ $62227604275200$ $174862042475330496$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $46$ $2982$ $149926$ $7886414$ $418134686$ $22164315894$ $1174713284630$ $62259698551966$ $3299763555471118$ $174887470150733382$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 144 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{53}$.

Endomorphism algebra over $\F_{53}$
The isogeny class factors as 1.53.ag $\times$ 1.53.ac and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.ae_dq$2$(not in LMFDB)
2.53.e_dq$2$(not in LMFDB)
2.53.i_eo$2$(not in LMFDB)