Properties

Label 2.41.a_ak
Base field $\F_{41}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{41}$
Dimension:  $2$
L-polynomial:  $1 - 10 x^{2} + 1681 x^{4}$
Frobenius angles:  $\pm0.230542426641$, $\pm0.769457573359$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-2}, \sqrt{23})\)
Galois group:  $C_2^2$
Jacobians:  $96$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1672$ $2795584$ $4750153672$ $8003376792576$ $13422659177169352$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $42$ $1662$ $68922$ $2832286$ $115856202$ $4750203102$ $194754273882$ $7984915250878$ $327381934393962$ $13422659044186302$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 96 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{41^{2}}$.

Endomorphism algebra over $\F_{41}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{23})\).
Endomorphism algebra over $\overline{\F}_{41}$
The base change of $A$ to $\F_{41^{2}}$ is 1.1681.ak 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-46}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.41.a_k$4$(not in LMFDB)
2.41.am_cu$8$(not in LMFDB)
2.41.m_cu$8$(not in LMFDB)