Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 71 x^{2} )( 1 + 16 x + 71 x^{2} )$ |
| $1 + 16 x + 142 x^{2} + 1136 x^{3} + 5041 x^{4}$ | |
| Frobenius angles: | $\pm0.5$, $\pm0.898333180169$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $238$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
| $p$-rank: | $1$ |
| Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6336$ | $25546752$ | $128347243200$ | $645423361228800$ | $3255239542012261056$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $88$ | $5070$ | $358600$ | $25398686$ | $1804227128$ | $128101242222$ | $9095116436648$ | $645753522754366$ | $45848500305381400$ | $3255243558221852430$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 238 curves (of which all are hyperelliptic):
- $y^2=18 x^6+12 x^5+38 x^4+7 x^3+26 x^2+70 x+34$
- $y^2=53 x^6+57 x^5+53 x^4+34 x^3+9 x^2+7 x+58$
- $y^2=16 x^6+3 x^5+55 x^4+2 x^3+25 x^2+49 x+39$
- $y^2=63 x^5+26 x^4+7 x^3+27 x^2+63 x+14$
- $y^2=19 x^6+21 x^5+52 x^4+27 x^3+14 x^2+47 x+16$
- $y^2=53 x^6+2 x^5+4 x^4+14 x^3+4 x^2+2 x+53$
- $y^2=59 x^6+58 x^5+64 x^4+46 x^3+38 x^2+40 x+11$
- $y^2=60 x^6+31 x^5+42 x^4+45 x^3+42 x^2+31 x+60$
- $y^2=55 x^6+61 x^5+57 x^4+35 x^3+45 x^2+23 x+1$
- $y^2=24 x^6+2 x^5+55 x^4+19 x^3+48 x^2+32 x+5$
- $y^2=29 x^6+52 x^5+34 x^4+70 x^3+64 x^2+66 x+44$
- $y^2=48 x^6+19 x^5+46 x^4+53 x^3+58 x^2+35 x+11$
- $y^2=60 x^6+27 x^5+16 x^4+60 x^3+56 x^2+34 x+37$
- $y^2=20 x^6+47 x^5+59 x^4+36 x^3+17 x^2+11 x+12$
- $y^2=17 x^6+27 x^5+36 x^4+54 x^3+36 x^2+27 x+17$
- $y^2=28 x^6+34 x^5+10 x^4+6 x^3+66 x^2+26 x+12$
- $y^2=35 x^6+6 x^5+29 x^4+56 x^3+20 x^2+13 x+49$
- $y^2=30 x^6+33 x^5+65 x^4+26 x^3+70 x^2+63 x+36$
- $y^2=64 x^6+30 x^5+48 x^4+51 x^2+40 x+15$
- $y^2=49 x^6+41 x^5+25 x^4+65 x^3+68 x^2+24 x+42$
- and 218 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$| The isogeny class factors as 1.71.a $\times$ 1.71.q and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{71^{2}}$ is 1.5041.aek $\times$ 1.5041.fm. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.71.aq_fm | $2$ | (not in LMFDB) |