| L(s) = 1 | + 2·2-s + 2·4-s + 5-s + 3·7-s + 4·8-s + 2·10-s + 2·11-s + 5·13-s + 6·14-s + 8·16-s − 16·17-s + 2·19-s + 2·20-s + 4·22-s − 6·23-s + 10·26-s + 6·28-s − 2·29-s + 8·32-s − 32·34-s + 3·35-s + 10·37-s + 4·38-s + 4·40-s + 10·41-s − 4·43-s + 4·44-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 4-s + 0.447·5-s + 1.13·7-s + 1.41·8-s + 0.632·10-s + 0.603·11-s + 1.38·13-s + 1.60·14-s + 2·16-s − 3.88·17-s + 0.458·19-s + 0.447·20-s + 0.852·22-s − 1.25·23-s + 1.96·26-s + 1.13·28-s − 0.371·29-s + 1.41·32-s − 5.48·34-s + 0.507·35-s + 1.64·37-s + 0.648·38-s + 0.632·40-s + 1.56·41-s − 0.609·43-s + 0.603·44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 164025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 164025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(4.766390820\) |
| \(L(\frac12)\) |
\(\approx\) |
\(4.766390820\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.64645548910393506153558759244, −11.22882763042049182602553103669, −10.70322080651256461515156567249, −10.55245329301344860005968789240, −9.484172136300199741271880591972, −9.369790042733689608550413883129, −8.489921626606955614305488679115, −8.389656835759033156851899294891, −7.73910683689901688485496081239, −7.09209990093959457095039561185, −6.57678207626383116409346854508, −6.17554562770879025472472323201, −5.71037283355038685346066876541, −5.03289313192704901915783090092, −4.46209447012997208372924027680, −4.13110739194272935515026937616, −3.93138456830584759827346734526, −2.66895190097342901208957581953, −2.02672669427142178442363967082, −1.43317395717623672860292060019,
1.43317395717623672860292060019, 2.02672669427142178442363967082, 2.66895190097342901208957581953, 3.93138456830584759827346734526, 4.13110739194272935515026937616, 4.46209447012997208372924027680, 5.03289313192704901915783090092, 5.71037283355038685346066876541, 6.17554562770879025472472323201, 6.57678207626383116409346854508, 7.09209990093959457095039561185, 7.73910683689901688485496081239, 8.389656835759033156851899294891, 8.489921626606955614305488679115, 9.369790042733689608550413883129, 9.484172136300199741271880591972, 10.55245329301344860005968789240, 10.70322080651256461515156567249, 11.22882763042049182602553103669, 11.64645548910393506153558759244