Properties

Label 2.11.ac_ah
Base field $\F_{11}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable no
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{11}$
Dimension:  $2$
L-polynomial:  $1 - 2 x - 7 x^{2} - 22 x^{3} + 121 x^{4}$
Frobenius angles:  $\pm0.0691755521456$, $\pm0.735842218812$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-3}, \sqrt{-10})\)
Galois group:  $C_2^2$
Jacobians:  $0$
Cyclic group of points:    yes

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $91$ $12649$ $1623076$ $215551609$ $25808743051$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $10$ $104$ $1216$ $14724$ $160250$ $1770158$ $19494590$ $214336324$ $2358020656$ $25937745704$

Jacobians and polarizations

This isogeny class is not principally polarizable, and therefore does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{11^{3}}$.

Endomorphism algebra over $\F_{11}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-10})\).
Endomorphism algebra over $\overline{\F}_{11}$
The base change of $A$ to $\F_{11^{3}}$ is 1.1331.acg 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-10}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.11.c_ah$2$2.121.as_hv
2.11.e_ba$3$(not in LMFDB)
2.11.ae_ba$6$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.11.c_ah$2$2.121.as_hv
2.11.e_ba$3$(not in LMFDB)
2.11.ae_ba$6$(not in LMFDB)
2.11.a_s$6$(not in LMFDB)
2.11.c_ah$6$(not in LMFDB)
2.11.a_as$12$(not in LMFDB)