Properties

Label 2.23.g_n
Base field $\F_{23}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{23}$
Dimension:  $2$
L-polynomial:  $1 + 6 x + 13 x^{2} + 138 x^{3} + 529 x^{4}$
Frobenius angles:  $\pm0.381789283893$, $\pm0.951544049441$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-3}, \sqrt{-14})\)
Galois group:  $C_2^2$
Jacobians:  $20$
Cyclic group of points:    yes

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $687$ $274113$ $152917956$ $78043534569$ $41418821208207$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $30$ $520$ $12564$ $278884$ $6435150$ $148006150$ $3404942130$ $78311343364$ $1801153731852$ $41426499766600$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{23^{3}}$.

Endomorphism algebra over $\F_{23}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-14})\).
Endomorphism algebra over $\overline{\F}_{23}$
The base change of $A$ to $\F_{23^{3}}$ is 1.12167.hq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-14}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.23.ag_n$2$(not in LMFDB)
2.23.am_de$3$(not in LMFDB)
2.23.ag_n$6$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.23.ag_n$2$(not in LMFDB)
2.23.am_de$3$(not in LMFDB)
2.23.ag_n$6$(not in LMFDB)
2.23.a_k$6$(not in LMFDB)
2.23.m_de$6$(not in LMFDB)
2.23.a_ak$12$(not in LMFDB)