Properties

Label 405.2.e.h
Level $405$
Weight $2$
Character orbit 405.e
Analytic conductor $3.234$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,2,Mod(136,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.136"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,-2,1,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \zeta_{6} + 2) q^{2} - 2 \zeta_{6} q^{4} + \zeta_{6} q^{5} + ( - 3 \zeta_{6} + 3) q^{7} + 2 q^{10} + ( - 2 \zeta_{6} + 2) q^{11} + 5 \zeta_{6} q^{13} - 6 \zeta_{6} q^{14} + ( - 4 \zeta_{6} + 4) q^{16} + \cdots - 4 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{4} + q^{5} + 3 q^{7} + 4 q^{10} + 2 q^{11} + 5 q^{13} - 6 q^{14} + 4 q^{16} - 16 q^{17} + 2 q^{19} + 2 q^{20} - 4 q^{22} - 6 q^{23} - q^{25} + 20 q^{26} - 12 q^{28} - 2 q^{29} - 8 q^{32}+ \cdots - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
136.1
0.500000 + 0.866025i
0.500000 0.866025i
1.00000 1.73205i 0 −1.00000 1.73205i 0.500000 + 0.866025i 0 1.50000 2.59808i 0 0 2.00000
271.1 1.00000 + 1.73205i 0 −1.00000 + 1.73205i 0.500000 0.866025i 0 1.50000 + 2.59808i 0 0 2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 405.2.e.h 2
3.b odd 2 1 405.2.e.b 2
9.c even 3 1 135.2.a.a 1
9.c even 3 1 inner 405.2.e.h 2
9.d odd 6 1 135.2.a.b yes 1
9.d odd 6 1 405.2.e.b 2
36.f odd 6 1 2160.2.a.j 1
36.h even 6 1 2160.2.a.v 1
45.h odd 6 1 675.2.a.a 1
45.j even 6 1 675.2.a.i 1
45.k odd 12 2 675.2.b.a 2
45.l even 12 2 675.2.b.b 2
63.l odd 6 1 6615.2.a.a 1
63.o even 6 1 6615.2.a.j 1
72.j odd 6 1 8640.2.a.c 1
72.l even 6 1 8640.2.a.bb 1
72.n even 6 1 8640.2.a.bh 1
72.p odd 6 1 8640.2.a.ce 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
135.2.a.a 1 9.c even 3 1
135.2.a.b yes 1 9.d odd 6 1
405.2.e.b 2 3.b odd 2 1
405.2.e.b 2 9.d odd 6 1
405.2.e.h 2 1.a even 1 1 trivial
405.2.e.h 2 9.c even 3 1 inner
675.2.a.a 1 45.h odd 6 1
675.2.a.i 1 45.j even 6 1
675.2.b.a 2 45.k odd 12 2
675.2.b.b 2 45.l even 12 2
2160.2.a.j 1 36.f odd 6 1
2160.2.a.v 1 36.h even 6 1
6615.2.a.a 1 63.l odd 6 1
6615.2.a.j 1 63.o even 6 1
8640.2.a.c 1 72.j odd 6 1
8640.2.a.bb 1 72.l even 6 1
8640.2.a.bh 1 72.n even 6 1
8640.2.a.ce 1 72.p odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(405, [\chi])\):

\( T_{2}^{2} - 2T_{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{2} - 3T_{7} + 9 \) Copy content Toggle raw display
\( T_{11}^{2} - 2T_{11} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$11$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$13$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$17$ \( (T + 8)^{2} \) Copy content Toggle raw display
$19$ \( (T - 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$29$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( (T - 5)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$43$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$47$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$53$ \( (T + 2)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$61$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$67$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$71$ \( (T - 2)^{2} \) Copy content Toggle raw display
$73$ \( (T + 5)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$83$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$89$ \( (T + 12)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 13T + 169 \) Copy content Toggle raw display
show more
show less