Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 7 x - 12 x^{2} + 427 x^{3} + 3721 x^{4}$ |
Frobenius angles: | $\pm0.314576171490$, $\pm0.981242838156$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{65})\) |
Galois group: | $C_2^2$ |
Jacobians: | $20$ |
Isomorphism classes: | 72 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4144$ | $13575744$ | $51947526400$ | $191678047352064$ | $713378746305641584$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $69$ | $3649$ | $228858$ | $13843729$ | $844638729$ | $51519522598$ | $3142743229149$ | $191707289770369$ | $11694146465972418$ | $713342911773740329$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=15 x^6+34 x^5+50 x^4+27 x^3+36 x^2+45 x+45$
- $y^2=28 x^6+53 x^5+19 x^4+37 x^3+40 x^2+34 x+12$
- $y^2=52 x^6+50 x^5+29 x^4+12 x^3+24 x^2+14 x+45$
- $y^2=60 x^6+5 x^5+46 x^4+28 x^3+53 x^2+49 x+49$
- $y^2=59 x^6+2 x^5+17 x^4+43 x^3+12 x^2+40 x+16$
- $y^2=2 x^6+4 x^3+28$
- $y^2=5 x^6+56 x^5+54 x^4+43 x^3+21 x^2+45 x+7$
- $y^2=28 x^6+59 x^5+14 x^4+53 x^3+60 x^2+55 x+45$
- $y^2=44 x^6+24 x^5+43 x^4+45 x^3+28 x^2+56 x+29$
- $y^2=32 x^6+51 x^5+51 x^4+13 x^3+28 x^2+44 x+27$
- $y^2=34 x^6+59 x^4+38 x^3+3 x^2+15 x+15$
- $y^2=60 x^6+37 x^5+6 x^4+29 x^3+15 x^2+24 x+9$
- $y^2=2 x^6+2 x^3+10$
- $y^2=31 x^6+44 x^5+53 x^4+43 x^3+38 x^2+5 x+27$
- $y^2=50 x^6+44 x^5+34 x^4+43 x^3+4 x^2+4 x+7$
- $y^2=15 x^6+35 x^5+2 x^4+31 x^3+11 x^2+34 x+27$
- $y^2=22 x^6+28 x^5+30 x^4+53 x^3+4 x^2+24 x+5$
- $y^2=58 x^6+17 x^5+7 x^4+27 x^3+5 x^2+28 x+13$
- $y^2=2 x^6+29 x^5+29 x^4+33 x^3+25 x^2+27 x+14$
- $y^2=7 x^6+8 x^5+19 x^4+44 x^3+42 x^2+24 x+15$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{3}}$.
Endomorphism algebra over $\F_{61}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{65})\). |
The base change of $A$ to $\F_{61^{3}}$ is 1.226981.bkc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-195}) \)$)$ |
Base change
This is a primitive isogeny class.