Properties

Label 2.17.q_du
Base field $\F_{17}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $2$
L-polynomial:  $( 1 + 8 x + 17 x^{2} )^{2}$
  $1 + 16 x + 98 x^{2} + 272 x^{3} + 289 x^{4}$
Frobenius angles:  $\pm0.922020869623$, $\pm0.922020869623$
Angle rank:  $1$ (numerical)
Jacobians:  $0$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $676$ $67600$ $25180324$ $6922240000$ $2018291883556$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $34$ $230$ $5122$ $82878$ $1421474$ $24135590$ $410327042$ $6975884158$ $118587060514$ $2015998274150$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17}$.

Endomorphism algebra over $\F_{17}$
The isogeny class factors as 1.17.i 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.17.aq_du$2$(not in LMFDB)
2.17.a_abe$2$(not in LMFDB)
2.17.ai_bv$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.17.aq_du$2$(not in LMFDB)
2.17.a_abe$2$(not in LMFDB)
2.17.ai_bv$3$(not in LMFDB)
2.17.ak_by$4$(not in LMFDB)
2.17.ag_s$4$(not in LMFDB)
2.17.ae_bm$4$(not in LMFDB)
2.17.a_be$4$(not in LMFDB)
2.17.e_bm$4$(not in LMFDB)
2.17.g_s$4$(not in LMFDB)
2.17.k_by$4$(not in LMFDB)
2.17.i_bv$6$(not in LMFDB)
2.17.a_aq$8$(not in LMFDB)
2.17.a_q$8$(not in LMFDB)
2.17.ac_an$12$(not in LMFDB)
2.17.c_an$12$(not in LMFDB)