L(s) = 1 | + 2·7-s − 4·17-s − 6·25-s − 16·31-s − 20·41-s − 16·47-s + 3·49-s − 16·71-s − 12·73-s + 16·79-s − 20·89-s + 4·97-s − 32·103-s − 4·113-s − 8·119-s + 18·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + ⋯ |
L(s) = 1 | + 0.755·7-s − 0.970·17-s − 6/5·25-s − 2.87·31-s − 3.12·41-s − 2.33·47-s + 3/7·49-s − 1.89·71-s − 1.40·73-s + 1.80·79-s − 2.11·89-s + 0.406·97-s − 3.15·103-s − 0.376·113-s − 0.733·119-s + 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 16257024 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16257024 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.287098041709885759277409325842, −7.923024052459618996053732677648, −7.54344227808032738300177653506, −7.16899020993558197238424791032, −6.69739379383295330985366411574, −6.68355178281688841293735959834, −5.93929643206678293862766940837, −5.49098672335557750876643991015, −5.46298827420576411585548751761, −4.77878341418333930062802044603, −4.57059994153129734164881212463, −4.08953329187303776173350026848, −3.44282785195345770810118991976, −3.44042776727223750706267296277, −2.70217593672733235510781820837, −1.96897627747997569255505561633, −1.77215398156784396795489555376, −1.41587113962574723061188292821, 0, 0,
1.41587113962574723061188292821, 1.77215398156784396795489555376, 1.96897627747997569255505561633, 2.70217593672733235510781820837, 3.44042776727223750706267296277, 3.44282785195345770810118991976, 4.08953329187303776173350026848, 4.57059994153129734164881212463, 4.77878341418333930062802044603, 5.46298827420576411585548751761, 5.49098672335557750876643991015, 5.93929643206678293862766940837, 6.68355178281688841293735959834, 6.69739379383295330985366411574, 7.16899020993558197238424791032, 7.54344227808032738300177653506, 7.923024052459618996053732677648, 8.287098041709885759277409325842