Properties

Label 4-4032e2-1.1-c1e2-0-28
Degree $4$
Conductor $16257024$
Sign $1$
Analytic cond. $1036.56$
Root an. cond. $5.67412$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 4·17-s − 6·25-s − 16·31-s − 20·41-s − 16·47-s + 3·49-s − 16·71-s − 12·73-s + 16·79-s − 20·89-s + 4·97-s − 32·103-s − 4·113-s − 8·119-s + 18·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + ⋯
L(s)  = 1  + 0.755·7-s − 0.970·17-s − 6/5·25-s − 2.87·31-s − 3.12·41-s − 2.33·47-s + 3/7·49-s − 1.89·71-s − 1.40·73-s + 1.80·79-s − 2.11·89-s + 0.406·97-s − 3.15·103-s − 0.376·113-s − 0.733·119-s + 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16257024 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16257024 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(16257024\)    =    \(2^{12} \cdot 3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1036.56\)
Root analytic conductor: \(5.67412\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 16257024,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7$C_1$ \( ( 1 - T )^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.5.a_g
11$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \) 2.11.a_as
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.13.a_ak
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \) 2.17.e_bm
19$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \) 2.19.a_ac
23$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.23.a_bu
29$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \) 2.29.a_g
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \) 2.31.q_ew
37$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \) 2.37.a_ak
41$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \) 2.41.u_ha
43$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \) 2.43.a_ade
47$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \) 2.47.q_gc
53$C_2$ \( ( 1 - p T^{2} )^{2} \) 2.53.a_aec
59$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \) 2.59.a_as
61$C_2^2$ \( 1 - 106 T^{2} + p^{2} T^{4} \) 2.61.a_aec
67$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \) 2.67.a_afa
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \) 2.71.q_hy
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \) 2.73.m_ha
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \) 2.79.aq_io
83$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \) 2.83.a_afa
89$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \) 2.89.u_ks
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \) 2.97.ae_hq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.287098041709885759277409325842, −7.923024052459618996053732677648, −7.54344227808032738300177653506, −7.16899020993558197238424791032, −6.69739379383295330985366411574, −6.68355178281688841293735959834, −5.93929643206678293862766940837, −5.49098672335557750876643991015, −5.46298827420576411585548751761, −4.77878341418333930062802044603, −4.57059994153129734164881212463, −4.08953329187303776173350026848, −3.44282785195345770810118991976, −3.44042776727223750706267296277, −2.70217593672733235510781820837, −1.96897627747997569255505561633, −1.77215398156784396795489555376, −1.41587113962574723061188292821, 0, 0, 1.41587113962574723061188292821, 1.77215398156784396795489555376, 1.96897627747997569255505561633, 2.70217593672733235510781820837, 3.44042776727223750706267296277, 3.44282785195345770810118991976, 4.08953329187303776173350026848, 4.57059994153129734164881212463, 4.77878341418333930062802044603, 5.46298827420576411585548751761, 5.49098672335557750876643991015, 5.93929643206678293862766940837, 6.68355178281688841293735959834, 6.69739379383295330985366411574, 7.16899020993558197238424791032, 7.54344227808032738300177653506, 7.923024052459618996053732677648, 8.287098041709885759277409325842

Graph of the $Z$-function along the critical line