Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 18 x^{2} + 3481 x^{4}$ |
| Frobenius angles: | $\pm0.225626973200$, $\pm0.774373026800$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(i, \sqrt{34})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $246$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3464$ | $11999296$ | $42180715784$ | $146991376000000$ | $511116752309695304$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $60$ | $3446$ | $205380$ | $12130638$ | $714924300$ | $42180897926$ | $2488651484820$ | $146830397947678$ | $8662995818654940$ | $511116751318749206$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 246 curves (of which all are hyperelliptic):
- $y^2=58 x^6+57 x^5+48 x^4+55 x^3+46 x^2+41 x+11$
- $y^2=30 x^6+5 x^5+55 x^4+28 x^3+57 x^2+51 x+13$
- $y^2=x^6+10 x^5+51 x^4+56 x^3+55 x^2+43 x+26$
- $y^2=55 x^6+52 x^5+35 x^4+35 x^3+47 x^2+23 x+32$
- $y^2=17 x^6+15 x^5+38 x^4+46 x^3+11 x^2+31 x+53$
- $y^2=34 x^6+30 x^5+17 x^4+33 x^3+22 x^2+3 x+47$
- $y^2=49 x^6+19 x^5+18 x^4+23 x^3+17 x^2+35 x+43$
- $y^2=33 x^6+11 x^5+43 x^4+37 x^3+35 x^2+28 x+17$
- $y^2=7 x^6+22 x^5+27 x^4+15 x^3+11 x^2+56 x+34$
- $y^2=27 x^6+3 x^5+18 x^4+41 x^3+3 x^2+55 x+11$
- $y^2=54 x^6+6 x^5+36 x^4+23 x^3+6 x^2+51 x+22$
- $y^2=28 x^6+58 x^5+18 x^3+7 x^2+x+36$
- $y^2=43 x^6+7 x^5+19 x^4+32 x^3+50 x^2+46 x+49$
- $y^2=27 x^6+14 x^5+38 x^4+5 x^3+41 x^2+33 x+39$
- $y^2=3 x^6+21 x^5+28 x^4+24 x^3+31 x^2+48 x+33$
- $y^2=24 x^6+42 x^5+28 x^4+6 x^3+43 x^2+24 x+47$
- $y^2=48 x^6+25 x^5+56 x^4+12 x^3+27 x^2+48 x+35$
- $y^2=14 x^6+35 x^5+36 x^4+31 x^3+39 x^2+43$
- $y^2=16 x^6+38 x^5+43 x^3+28 x^2+47 x+39$
- $y^2=32 x^6+17 x^5+27 x^3+56 x^2+35 x+19$
- and 226 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{34})\). |
| The base change of $A$ to $\F_{59^{2}}$ is 1.3481.as 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-34}) \)$)$ |
Base change
This is a primitive isogeny class.