| L(s) = 1 | + 3-s + 9-s − 6·25-s + 27-s + 12·37-s + 16·47-s − 7·49-s + 8·59-s − 6·75-s + 81-s + 24·83-s − 20·109-s + 12·111-s + 18·121-s + 127-s + 131-s + 137-s + 139-s + 16·141-s − 7·147-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + ⋯ |
| L(s) = 1 | + 0.577·3-s + 1/3·9-s − 6/5·25-s + 0.192·27-s + 1.97·37-s + 2.33·47-s − 49-s + 1.04·59-s − 0.692·75-s + 1/9·81-s + 2.63·83-s − 1.91·109-s + 1.13·111-s + 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.34·141-s − 0.577·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.208428044\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.208428044\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.819232585646660215792784507209, −8.193528111584429528608742769278, −7.81088115160325207251355213223, −7.57707322471367984261875892913, −6.91773934502363544492277410633, −6.42220622746433728521228673103, −5.94035980383987971544431680774, −5.43719813555882240430234597605, −4.84061392476483004743428124518, −4.09999936954950450597003806766, −3.93195351568068559676029275292, −3.09477818906188854039088131353, −2.48817396146028453358802572710, −1.90950318412374428321071078017, −0.839819930261735239821289741006,
0.839819930261735239821289741006, 1.90950318412374428321071078017, 2.48817396146028453358802572710, 3.09477818906188854039088131353, 3.93195351568068559676029275292, 4.09999936954950450597003806766, 4.84061392476483004743428124518, 5.43719813555882240430234597605, 5.94035980383987971544431680774, 6.42220622746433728521228673103, 6.91773934502363544492277410633, 7.57707322471367984261875892913, 7.81088115160325207251355213223, 8.193528111584429528608742769278, 8.819232585646660215792784507209