Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 42 x^{2} + 5041 x^{4}$ |
| Frobenius angles: | $\pm0.202211126514$, $\pm0.797788873486$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(i, \sqrt{46})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $246$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5000$ | $25000000$ | $128100845000$ | $646176400000000$ | $3255243547410125000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $72$ | $4958$ | $357912$ | $25428318$ | $1804229352$ | $128101406078$ | $9095120158392$ | $645753494514238$ | $45848500718449032$ | $3255243543810368798$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 246 curves (of which all are hyperelliptic):
- $y^2=64 x^6+45 x^5+57 x^4+17 x^3+4 x^2+56 x+20$
- $y^2=22 x^6+31 x^5+44 x^4+48 x^3+28 x^2+37 x+69$
- $y^2=44 x^6+17 x^5+28 x^4+68 x^3+50 x^2+43 x+37$
- $y^2=21 x^6+23 x^5+6 x^4+8 x^3+24 x^2+4 x+28$
- $y^2=8 x^6+27 x^5+65 x^4+51 x^2+20 x+56$
- $y^2=56 x^6+47 x^5+29 x^4+2 x^2+69 x+37$
- $y^2=3 x^6+9 x^5+3 x^4+37 x^3+5 x^2+26 x+55$
- $y^2=21 x^6+63 x^5+21 x^4+46 x^3+35 x^2+40 x+30$
- $y^2=47 x^6+28 x^5+4 x^4+49 x^3+42 x^2+28 x+43$
- $y^2=45 x^6+54 x^5+28 x^4+59 x^3+10 x^2+54 x+17$
- $y^2=64 x^6+62 x^5+5 x^4+57 x^3+9 x^2+49 x+49$
- $y^2=22 x^6+8 x^5+35 x^4+44 x^3+63 x^2+59 x+59$
- $y^2=9 x^6+64 x^5+63 x^4+34 x^3+29 x^2+43 x$
- $y^2=29 x^6+10 x^5+35 x^4+23 x^3+3 x^2+9 x+12$
- $y^2=61 x^6+70 x^5+32 x^4+19 x^3+21 x^2+63 x+13$
- $y^2=60 x^6+33 x^5+50 x^4+32 x^3+24 x^2+15 x+62$
- $y^2=65 x^6+18 x^5+66 x^4+11 x^3+26 x^2+34 x+8$
- $y^2=33 x^6+43 x^5+60 x^4+52 x^3+69 x^2+61 x+46$
- $y^2=18 x^6+17 x^5+65 x^4+9 x^3+57 x^2+x+38$
- $y^2=26 x^6+8 x^5+25 x^3+23 x^2+35 x+42$
- and 226 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{46})\). |
| The base change of $A$ to $\F_{71^{2}}$ is 1.5041.abq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-46}) \)$)$ |
Base change
This is a primitive isogeny class.