Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 58 x^{2} + 3721 x^{4}$ |
| Frobenius angles: | $\pm0.171149895095$, $\pm0.828850104905$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(i, \sqrt{5})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $303$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3664$ | $13424896$ | $51520826704$ | $191820284006400$ | $713342910621290704$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $62$ | $3606$ | $226982$ | $13853998$ | $844596302$ | $51521279046$ | $3142742836022$ | $191707335120478$ | $11694146092834142$ | $713342909579698806$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 303 curves (of which all are hyperelliptic):
- $y^2=27 x^6+32 x^5+8 x^4+48 x^3+14 x^2+55 x+32$
- $y^2=54 x^6+3 x^5+16 x^4+35 x^3+28 x^2+49 x+3$
- $y^2=2 x^6+41 x^5+12 x^3+27 x^2+59 x+58$
- $y^2=4 x^6+21 x^5+24 x^3+54 x^2+57 x+55$
- $y^2=37 x^6+9 x^5+58 x^4+14 x^3+48 x^2+21 x+54$
- $y^2=13 x^6+18 x^5+55 x^4+28 x^3+35 x^2+42 x+47$
- $y^2=7 x^6+5 x^5+3 x^4+39 x^3+19 x^2+12 x$
- $y^2=14 x^6+10 x^5+6 x^4+17 x^3+38 x^2+24 x$
- $y^2=52 x^6+60 x^5+22 x^4+55 x^3+55 x^2+44 x+9$
- $y^2=43 x^6+59 x^5+44 x^4+49 x^3+49 x^2+27 x+18$
- $y^2=18 x^6+23 x^5+22 x^4+60 x^3+9 x^2+49 x+47$
- $y^2=36 x^6+46 x^5+44 x^4+59 x^3+18 x^2+37 x+33$
- $y^2=5 x^6+49 x^5+17 x^4+39 x^3+41 x^2+56 x+43$
- $y^2=31 x^6+49 x^5+47 x^4+19 x^2+47 x+44$
- $y^2=7 x^6+60 x^5+56 x^4+32 x^3+14 x^2+33 x+26$
- $y^2=42 x^6+3 x^5+30 x^4+37 x^3+42 x^2+37 x+21$
- $y^2=23 x^6+6 x^5+60 x^4+13 x^3+23 x^2+13 x+42$
- $y^2=38 x^6+44 x^5+33 x^4+x^3+34 x^2+14 x+38$
- $y^2=13 x^6+44 x^5+20 x^4+60 x^3+27 x^2+34 x+60$
- $y^2=26 x^6+27 x^5+40 x^4+59 x^3+54 x^2+7 x+59$
- and 283 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{2}}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{5})\). |
| The base change of $A$ to $\F_{61^{2}}$ is 1.3721.acg 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-5}) \)$)$ |
Base change
This is a primitive isogeny class.