L(s) = 1 | + 8·13-s + 8·25-s − 4·37-s + 14·49-s + 20·61-s − 32·73-s + 16·97-s − 40·109-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
L(s) = 1 | + 2.21·13-s + 8/5·25-s − 0.657·37-s + 2·49-s + 2.56·61-s − 3.74·73-s + 1.62·97-s − 3.83·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 331776 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 331776 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.132693776\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.132693776\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.68275052586659087921319497973, −10.61885454202765275179954157864, −10.31670034381543091886270597365, −9.575390039087647071437045154020, −8.915288129991793242359600146610, −8.892310306806202347208647108774, −8.365345937509952469990148640623, −8.022253874225529949051092210267, −7.15726967605187408569971082822, −7.01748190609164655772193904811, −6.37892264030131945486383552163, −5.95231434978599084789235368728, −5.45561806442231171703791859695, −4.98753274533784914708833691558, −4.04403104942718968977940689424, −3.97991842024068186800107769066, −3.15271126923595400466103256639, −2.62048424389790237137731620764, −1.59127865434395909682260622352, −0.927493852611657402345888739097,
0.927493852611657402345888739097, 1.59127865434395909682260622352, 2.62048424389790237137731620764, 3.15271126923595400466103256639, 3.97991842024068186800107769066, 4.04403104942718968977940689424, 4.98753274533784914708833691558, 5.45561806442231171703791859695, 5.95231434978599084789235368728, 6.37892264030131945486383552163, 7.01748190609164655772193904811, 7.15726967605187408569971082822, 8.022253874225529949051092210267, 8.365345937509952469990148640623, 8.892310306806202347208647108774, 8.915288129991793242359600146610, 9.575390039087647071437045154020, 10.31670034381543091886270597365, 10.61885454202765275179954157864, 10.68275052586659087921319497973