Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 16 x + 73 x^{2} )^{2}$ |
| $1 + 32 x + 402 x^{2} + 2336 x^{3} + 5329 x^{4}$ | |
| Frobenius angles: | $\pm0.885799748780$, $\pm0.885799748780$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $5$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3, 5$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $8100$ | $27248400$ | $151795952100$ | $806378250240000$ | $4297542314347102500$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $106$ | $5110$ | $390202$ | $28395358$ | $2073031306$ | $151335081430$ | $11047387777882$ | $806460201328318$ | $58871585741428906$ | $4297625837184282550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 5 curves (of which all are hyperelliptic):
- $y^2=x^6+x^3+24$
- $y^2=18 x^6+23 x^4+23 x^2+18$
- $y^2=8 x^6+17 x^5+37 x^4+14 x^3+48 x^2+14 x+27$
- $y^2=x^6+x^3+65$
- $y^2=29 x^6+21 x^5+50 x^4+32 x^3+9 x^2+58 x+14$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The isogeny class factors as 1.73.q 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
Base change
This is a primitive isogeny class.