L(s) = 1 | + 3-s + 9-s + 2·11-s + 17-s − 9·19-s − 25-s + 27-s + 2·33-s − 13·41-s − 3·43-s + 6·49-s + 51-s − 9·57-s + 13·67-s + 14·73-s − 75-s + 81-s − 4·83-s + 9·89-s + 18·97-s + 2·99-s − 20·107-s + 25·113-s − 18·121-s − 13·123-s + 127-s − 3·129-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/3·9-s + 0.603·11-s + 0.242·17-s − 2.06·19-s − 1/5·25-s + 0.192·27-s + 0.348·33-s − 2.03·41-s − 0.457·43-s + 6/7·49-s + 0.140·51-s − 1.19·57-s + 1.58·67-s + 1.63·73-s − 0.115·75-s + 1/9·81-s − 0.439·83-s + 0.953·89-s + 1.82·97-s + 0.201·99-s − 1.93·107-s + 2.35·113-s − 1.63·121-s − 1.17·123-s + 0.0887·127-s − 0.264·129-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2073600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2073600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.327690553\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.327690553\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.82126628145067219209593330318, −7.29668484751249940518922125368, −6.82763642700089929121350372087, −6.54912785014526699084986980746, −6.19058271873125930053577278119, −5.60957446274182471794276843766, −5.06335769921059433732190030637, −4.64951244666879282673773601207, −4.13802114252349875838931327433, −3.65146900650596994231790871573, −3.37506310092476169535610004049, −2.54587863722260339503119939903, −2.07039258377071037076247629063, −1.61258210128332938872577577286, −0.58550777041650015333730529553,
0.58550777041650015333730529553, 1.61258210128332938872577577286, 2.07039258377071037076247629063, 2.54587863722260339503119939903, 3.37506310092476169535610004049, 3.65146900650596994231790871573, 4.13802114252349875838931327433, 4.64951244666879282673773601207, 5.06335769921059433732190030637, 5.60957446274182471794276843766, 6.19058271873125930053577278119, 6.54912785014526699084986980746, 6.82763642700089929121350372087, 7.29668484751249940518922125368, 7.82126628145067219209593330318