Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 2 x + 43 x^{2} )( 1 + 5 x + 43 x^{2} )$ |
$1 + 3 x + 76 x^{2} + 129 x^{3} + 1849 x^{4}$ | |
Frobenius angles: | $\pm0.451268054243$, $\pm0.624505058506$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $28$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2058$ | $3692052$ | $6299924904$ | $11677783257504$ | $21612316208578998$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $47$ | $1993$ | $79238$ | $3415753$ | $147014117$ | $6321348178$ | $271819117127$ | $11688204795601$ | $502592551354514$ | $21611482113885193$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 28 curves (of which all are hyperelliptic):
- $y^2=6 x^6+18 x^5+3 x^4+13 x^3+12 x^2+40 x+4$
- $y^2=7 x^6+39 x^5+24 x^4+8 x^3+29 x^2+25 x+9$
- $y^2=4 x^6+35 x^5+25 x^3+17 x^2+24 x+30$
- $y^2=36 x^6+28 x^5+42 x^4+19 x^3+10 x^2+40 x+25$
- $y^2=31 x^6+20 x^5+7 x^4+11 x^3+23 x^2+22 x+40$
- $y^2=13 x^6+20 x^5+17 x^4+8 x^3+27 x^2+11 x+40$
- $y^2=5 x^6+39 x^5+25 x^4+8 x^3+28 x^2+42 x+15$
- $y^2=x^6+27 x^5+30 x^4+29 x^3+x^2+42 x+6$
- $y^2=26 x^6+2 x^5+12 x^4+8 x^3+7 x^2+32 x+40$
- $y^2=25 x^6+21 x^5+6 x^4+10 x^3+42 x^2+10 x+30$
- $y^2=41 x^6+18 x^5+17 x^4+18 x^3+30 x^2+30 x+37$
- $y^2=23 x^6+38 x^5+36 x^4+23 x^3+19 x^2+20 x+18$
- $y^2=33 x^6+22 x^5+15 x^4+11 x^3+x^2+6 x+7$
- $y^2=6 x^6+19 x^5+4 x^4+2 x^3+25 x^2+x+15$
- $y^2=42 x^6+24 x^5+6 x^4+3 x^3+30 x^2+16 x+4$
- $y^2=23 x^6+3 x^5+8 x^4+8 x^3+14 x^2+24 x+38$
- $y^2=8 x^6+2 x^5+32 x^4+12 x^3+15 x^2+x+39$
- $y^2=32 x^6+39 x^5+5 x^4+25 x^3+34 x^2+16 x+27$
- $y^2=26 x^6+35 x^5+37 x^4+29 x^3+41 x^2+25 x+35$
- $y^2=20 x^6+33 x^5+42 x^4+41 x^3+19 x^2+10 x+35$
- $y^2=31 x^6+30 x^5+2 x^4+24 x^3+28 x^2+38 x+4$
- $y^2=3 x^6+28 x^5+8 x^4+22 x^3+31 x+9$
- $y^2=10 x^6+16 x^5+26 x^4+42 x^3+32 x^2+30 x+16$
- $y^2=39 x^6+7 x^5+18 x^4+34 x^3+25 x^2+41 x+20$
- $y^2=24 x^6+18 x^5+2 x^4+39 x^3+34 x^2+32 x+16$
- $y^2=12 x^6+20 x^5+10 x^4+30 x^3+7 x^2+25 x+21$
- $y^2=17 x^6+25 x^4+24 x^3+42 x^2+12 x+1$
- $y^2=42 x^6+16 x^5+13 x^4+40 x^3+6 x^2+42 x+10$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The isogeny class factors as 1.43.ac $\times$ 1.43.f and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.