Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 56 x^{2} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.338585532783$, $\pm0.661414467217$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\zeta_{8})\) |
Galois group: | $C_2^2$ |
Jacobians: | $80$ |
Isomorphism classes: | 183 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2866$ | $8213956$ | $22164064834$ | $62298880705296$ | $174887470659052786$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $2922$ | $148878$ | $7895446$ | $418195494$ | $22163768538$ | $1174711139838$ | $62259709652638$ | $3299763591802134$ | $174887470952592522$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 80 curves (of which all are hyperelliptic):
- $y^2=5 x^6+20 x^5+19 x^4+38 x^2+26 x+40$
- $y^2=44 x^6+32 x^5+26 x^4+4 x^3+18 x^2+24 x+49$
- $y^2=35 x^6+11 x^5+52 x^4+8 x^3+36 x^2+48 x+45$
- $y^2=7 x^6+39 x^5+30 x^4+30 x^3+44 x^2+5 x+44$
- $y^2=14 x^6+25 x^5+7 x^4+7 x^3+35 x^2+10 x+35$
- $y^2=48 x^6+32 x^5+46 x^4+50 x^3+28 x^2+34 x+1$
- $y^2=43 x^6+11 x^5+39 x^4+47 x^3+3 x^2+15 x+2$
- $y^2=41 x^6+51 x^5+x^4+49 x^3+33 x^2+38 x+29$
- $y^2=29 x^6+49 x^5+2 x^4+45 x^3+13 x^2+23 x+5$
- $y^2=50 x^6+30 x^5+44 x^4+52 x^3+26 x^2+27 x+26$
- $y^2=47 x^6+7 x^5+35 x^4+51 x^3+52 x^2+x+52$
- $y^2=40 x^6+16 x^5+23 x^4+17 x^3+41 x^2+22 x+1$
- $y^2=27 x^6+32 x^5+46 x^4+34 x^3+29 x^2+44 x+2$
- $y^2=19 x^6+38 x^5+13 x^4+3 x^3+25 x^2+41 x+3$
- $y^2=38 x^6+23 x^5+26 x^4+6 x^3+50 x^2+29 x+6$
- $y^2=13 x^6+51 x^5+18 x^4+16 x^3+7 x^2+25 x+23$
- $y^2=26 x^6+49 x^5+36 x^4+32 x^3+14 x^2+50 x+46$
- $y^2=49 x^6+44 x^5+19 x^4+14 x^3+9 x^2+18 x+16$
- $y^2=45 x^6+35 x^5+38 x^4+28 x^3+18 x^2+36 x+32$
- $y^2=12 x^6+45 x^5+27 x^4+12 x^3+22 x^2+50 x+23$
- and 60 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{2}}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{8})\). |
The base change of $A$ to $\F_{53^{2}}$ is 1.2809.ce 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
Base change
This is a primitive isogeny class.