Invariants
Base field: | $\F_{19}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 2 x + 19 x^{2} )( 1 + 7 x + 19 x^{2} )$ |
$1 + 9 x + 52 x^{2} + 171 x^{3} + 361 x^{4}$ | |
Frobenius angles: | $\pm0.573681533379$, $\pm0.796740135813$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $12$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $594$ | $138996$ | $45954216$ | $17005326624$ | $6130415889774$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $29$ | $385$ | $6698$ | $130489$ | $2475839$ | $47058946$ | $893797661$ | $16983534769$ | $322689664622$ | $6131057977825$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):
- $y^2=16 x^6+6 x^5+2 x^4+6 x^3+9 x^2+13 x+4$
- $y^2=18 x^6+16 x^5+6 x^4+9 x^3+x^2+17 x+9$
- $y^2=7 x^6+16 x^5+9 x^4+8 x^3+x^2+2 x+7$
- $y^2=15 x^6+18 x^5+5 x^4+17 x^3+4 x+9$
- $y^2=12 x^6+7 x^5+8 x^4+8 x^3+10 x+16$
- $y^2=12 x^6+2 x^5+17 x^4+9 x^3+14 x^2+18 x+6$
- $y^2=11 x^5+16 x^4+10 x^3+17 x^2+12 x+8$
- $y^2=7 x^6+5 x^5+14 x^4+18 x^3+16 x^2+11 x+9$
- $y^2=16 x^6+18 x^5+10 x^4+9 x^3+7 x^2+5 x+16$
- $y^2=4 x^6+12 x^5+12 x^4+15 x^3+3 x^2+15 x+2$
- $y^2=4 x^6+6 x^5+18 x^3+14 x^2+12 x+14$
- $y^2=12 x^6+11 x^5+17 x^4+2 x^3+8 x^2+12 x+4$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19}$.
Endomorphism algebra over $\F_{19}$The isogeny class factors as 1.19.c $\times$ 1.19.h and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.