Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 15 x + 67 x^{2} )( 1 + 2 x + 67 x^{2} )$ |
$1 - 13 x + 104 x^{2} - 871 x^{3} + 4489 x^{4}$ | |
Frobenius angles: | $\pm0.131184157393$, $\pm0.538985133153$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $64$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3710$ | $20323380$ | $90232349480$ | $405922120480800$ | $1822941521272950050$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $55$ | $4529$ | $300010$ | $20143897$ | $1350201925$ | $90459300386$ | $6060712644895$ | $406067694917233$ | $27206534968801870$ | $1822837806972444689$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 64 curves (of which all are hyperelliptic):
- $y^2=29 x^6+63 x^5+58 x^4+17 x^3+45 x^2+31 x+12$
- $y^2=30 x^6+18 x^5+46 x^4+20 x^3+28 x^2+7 x+44$
- $y^2=34 x^6+38 x^5+62 x^4+29 x^3+44 x^2+56 x+21$
- $y^2=11 x^6+x^5+48 x^4+18 x^3+60 x^2+5 x+9$
- $y^2=25 x^6+34 x^5+3 x^4+53 x^3+36 x^2+18 x+57$
- $y^2=17 x^6+57 x^5+27 x^4+4 x^3+18 x^2+57 x+63$
- $y^2=13 x^6+22 x^5+30 x^4+46 x^2+62 x+5$
- $y^2=57 x^6+63 x^5+48 x^4+16 x^3+54 x^2+56 x+13$
- $y^2=47 x^6+59 x^5+37 x^4+61 x^3+66 x^2+53 x+2$
- $y^2=52 x^6+58 x^5+65 x^4+53 x^3+2 x^2+50 x+43$
- $y^2=66 x^6+25 x^5+66 x^4+24 x^3+27 x^2+42 x+58$
- $y^2=45 x^6+35 x^5+42 x^4+56 x^3+39 x^2+5 x+19$
- $y^2=31 x^6+10 x^5+51 x^4+42 x^3+36 x^2+5 x+43$
- $y^2=21 x^6+39 x^5+29 x^4+17 x^3+44 x^2+36 x+62$
- $y^2=12 x^6+21 x^5+8 x^4+5 x^3+47 x^2+48 x+12$
- $y^2=48 x^6+17 x^5+25 x^4+66 x^3+2 x^2+38 x+27$
- $y^2=22 x^6+17 x^5+62 x^4+24 x^3+2 x^2+12 x+63$
- $y^2=24 x^6+13 x^5+31 x^4+22 x^3+26 x^2+13 x+45$
- $y^2=26 x^6+25 x^5+6 x^4+23 x^3+55 x^2+38 x+54$
- $y^2=51 x^6+29 x^5+63 x^4+41 x^3+13 x^2+55 x+30$
- and 44 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$The isogeny class factors as 1.67.ap $\times$ 1.67.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.67.ar_gi | $2$ | (not in LMFDB) |
2.67.n_ea | $2$ | (not in LMFDB) |
2.67.r_gi | $2$ | (not in LMFDB) |