Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + x + 83 x^{2} )( 1 + 3 x + 83 x^{2} )$ |
$1 + 4 x + 169 x^{2} + 332 x^{3} + 6889 x^{4}$ | |
Frobenius angles: | $\pm0.517478306302$, $\pm0.552648295368$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $36$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7395$ | $49716585$ | $326388204720$ | $2251138381763625$ | $15516539108721044475$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $88$ | $7212$ | $570820$ | $47434004$ | $3939167048$ | $326942080614$ | $27136037540504$ | $2252292122971876$ | $186940256539508860$ | $15516041193271135932$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=51 x^6+10 x^5+77 x^4+80 x^3+10 x^2+37 x+59$
- $y^2=52 x^6+65 x^5+25 x^4+66 x^3+33 x^2+11 x+82$
- $y^2=51 x^6+5 x^5+43 x^4+34 x^3+15 x^2+2 x+38$
- $y^2=29 x^6+8 x^5+79 x^4+11 x^3+46 x^2+62 x+61$
- $y^2=9 x^6+20 x^5+48 x^4+28 x^3+59 x^2+5 x+30$
- $y^2=17 x^6+33 x^5+17 x^4+64 x^2+26 x+63$
- $y^2=48 x^6+55 x^5+52 x^4+64 x^3+50 x^2+8 x+16$
- $y^2=38 x^6+44 x^5+80 x^4+59 x^3+52 x^2+41 x+10$
- $y^2=58 x^6+10 x^5+11 x^4+74 x^3+10 x^2+70 x+22$
- $y^2=56 x^6+40 x^5+52 x^4+46 x^3+15 x^2+63 x+43$
- $y^2=26 x^6+27 x^5+69 x^4+20 x^3+7 x^2+69 x+59$
- $y^2=45 x^6+30 x^5+66 x^4+22 x^3+66 x^2+30 x+45$
- $y^2=55 x^6+82 x^5+28 x^4+30 x^3+25 x^2+19 x+60$
- $y^2=41 x^6+53 x^5+34 x^4+78 x^3+13 x^2+15 x+30$
- $y^2=36 x^6+13 x^5+5 x^4+38 x^3+55 x^2+79 x+25$
- $y^2=81 x^6+81 x^5+60 x^4+67 x^3+13 x^2+48 x+27$
- $y^2=25 x^6+71 x^5+32 x^4+23 x^3+39 x^2+24 x+48$
- $y^2=28 x^6+53 x^5+38 x^4+4 x^3+44 x^2+66 x+44$
- $y^2=35 x^6+70 x^5+42 x^4+52 x^3+55 x^2+68 x+5$
- $y^2=7 x^6+21 x^5+55 x^4+77 x^3+45 x^2+12 x+41$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$The isogeny class factors as 1.83.b $\times$ 1.83.d and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.83.ae_gn | $2$ | (not in LMFDB) |
2.83.ac_gh | $2$ | (not in LMFDB) |
2.83.c_gh | $2$ | (not in LMFDB) |