Invariants
Base field: | $\F_{17}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 4 x + 17 x^{2} )( 1 + 3 x + 17 x^{2} )$ |
$1 - x + 22 x^{2} - 17 x^{3} + 289 x^{4}$ | |
Frobenius angles: | $\pm0.338793663197$, $\pm0.618522015261$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $18$ |
Isomorphism classes: | 150 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $294$ | $97020$ | $24198552$ | $6993201600$ | $2017298475654$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $17$ | $333$ | $4928$ | $83729$ | $1420777$ | $24121746$ | $410302105$ | $6976024801$ | $118588413776$ | $2015992507293$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=6 x^6+8 x^5+4 x^4+4 x^3+9 x^2+7 x+5$
- $y^2=16 x^6+x^5+3 x^4+12 x^3+13 x^2+15 x$
- $y^2=13 x^6+14 x^5+2 x^4+x^3+5 x^2+11 x+2$
- $y^2=9 x^6+6 x^5+8 x^4+9 x^3+13 x^2+13 x+3$
- $y^2=x^6+15 x^5+14 x^4+13 x^3+14 x^2+5 x+15$
- $y^2=14 x^6+11 x^5+8 x^4+13 x^3+11 x^2+6 x$
- $y^2=14 x^6+15 x^5+7 x^4+4 x^3+16 x^2+9 x+11$
- $y^2=x^6+4 x^5+14 x^4+9 x^3+16 x^2+6 x$
- $y^2=13 x^6+11 x^5+8 x^4+10 x^3+8 x^2+6 x+14$
- $y^2=3 x^6+13 x^5+7 x^3+5 x^2+16 x+13$
- $y^2=7 x^6+16 x^5+10 x^4+3 x^3+13 x^2+3 x+4$
- $y^2=13 x^6+x^5+10 x^4+3 x^3+x^2+x+10$
- $y^2=16 x^6+9 x^5+16 x^4+2 x^3+11 x^2+9 x+5$
- $y^2=7 x^6+4 x^5+9 x^4+9 x^3+7 x^2+14 x+12$
- $y^2=15 x^6+11 x^5+9 x^4+10 x^3+x^2+7 x+16$
- $y^2=11 x^6+2 x^5+8 x^4+12 x^3+12 x^2+3 x+8$
- $y^2=4 x^6+11 x^5+13 x^4+x^3+8 x^2+2 x+3$
- $y^2=4 x^6+2 x^5+10 x^4+9 x^3+11 x^2+9 x+10$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17}$.
Endomorphism algebra over $\F_{17}$The isogeny class factors as 1.17.ae $\times$ 1.17.d and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.17.ah_bu | $2$ | (not in LMFDB) |
2.17.b_w | $2$ | (not in LMFDB) |
2.17.h_bu | $2$ | (not in LMFDB) |