Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 7 x + 73 x^{2} )^{2}$ |
$1 - 14 x + 195 x^{2} - 1022 x^{3} + 5329 x^{4}$ | |
Frobenius angles: | $\pm0.365652920247$, $\pm0.365652920247$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $43$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4489$ | $29452329$ | $152262283264$ | $806531089059081$ | $4297301914224680089$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $60$ | $5524$ | $391398$ | $28400740$ | $2072915340$ | $151332950158$ | $11047400992716$ | $806460202367044$ | $58871587301004534$ | $4297625825788187764$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 43 curves (of which all are hyperelliptic):
- $y^2=59 x^6+5 x^5+59 x^4+45 x^3+56 x^2+7 x+20$
- $y^2=47 x^6+57 x^5+72 x^4+44 x^3+29 x^2+65 x+30$
- $y^2=53 x^6+42 x^5+20 x^4+17 x^3+57 x^2+32 x+50$
- $y^2=29 x^6+24 x^5+28 x^4+46 x^3+71 x^2+20 x+61$
- $y^2=5 x^6+63 x^3+33$
- $y^2=65 x^6+60 x^5+28 x^4+36 x^3+8 x^2+41 x+11$
- $y^2=5 x^6+30 x^3+58$
- $y^2=69 x^6+61 x^5+x^3+23 x+35$
- $y^2=63 x^6+70 x^5+35 x^4+13 x^3+57 x^2+48 x+52$
- $y^2=52 x^6+42 x^5+55 x^4+20 x^3+7 x^2+50 x+27$
- $y^2=5 x^6+5 x^3+45$
- $y^2=21 x^6+12 x^5+56 x^4+19 x^3+38 x^2+16 x+18$
- $y^2=42 x^6+70 x^5+69 x^3+66 x^2+10 x+50$
- $y^2=10 x^6+67 x^5+52 x^4+8 x^3+26 x^2+35 x+56$
- $y^2=18 x^6+67 x^5+66 x^4+30 x^3+61 x^2+11 x+49$
- $y^2=27 x^6+19 x^5+47 x^4+40 x^3+43 x^2+47 x+9$
- $y^2=26 x^6+36 x^5+49 x^4+66 x^3+63 x^2+67 x+1$
- $y^2=14 x^6+57 x^5+45 x^4+5 x^3+17 x^2+30 x+60$
- $y^2=5 x^6+66 x^3+33$
- $y^2=28 x^6+51 x^5+68 x^4+50 x^3+31 x^2+42 x+58$
- and 23 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The isogeny class factors as 1.73.ah 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.