L(s) = 1 | − 2·3-s − 3·9-s − 6·11-s + 12·17-s − 4·19-s − 10·25-s + 14·27-s + 12·33-s − 18·41-s − 16·43-s − 13·49-s − 24·51-s + 8·57-s − 24·59-s + 8·67-s + 22·73-s + 20·75-s − 4·81-s − 18·83-s + 12·89-s + 16·97-s + 18·99-s − 24·107-s − 12·113-s + 5·121-s + 36·123-s + 127-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 9-s − 1.80·11-s + 2.91·17-s − 0.917·19-s − 2·25-s + 2.69·27-s + 2.08·33-s − 2.81·41-s − 2.43·43-s − 1.85·49-s − 3.36·51-s + 1.05·57-s − 3.12·59-s + 0.977·67-s + 2.57·73-s + 2.30·75-s − 4/9·81-s − 1.97·83-s + 1.27·89-s + 1.62·97-s + 1.80·99-s − 2.32·107-s − 1.12·113-s + 5/11·121-s + 3.24·123-s + 0.0887·127-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1401856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1401856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.83252666101026187146437096539, −6.92702526110685059626904983928, −6.49509806030834552919855622210, −6.13026790010533892031415629049, −5.52397436821147602871559735263, −5.50302825732666851289149768404, −4.91803715229452696224797784043, −4.81124860316907390767416903100, −3.49656973901712201010716232454, −3.42634561262787911027610453075, −2.90414738025441870892963779928, −2.09291945273234411794912146252, −1.39370194281586028856128276808, 0, 0,
1.39370194281586028856128276808, 2.09291945273234411794912146252, 2.90414738025441870892963779928, 3.42634561262787911027610453075, 3.49656973901712201010716232454, 4.81124860316907390767416903100, 4.91803715229452696224797784043, 5.50302825732666851289149768404, 5.52397436821147602871559735263, 6.13026790010533892031415629049, 6.49509806030834552919855622210, 6.92702526110685059626904983928, 7.83252666101026187146437096539