Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 9 x + 41 x^{2} )^{2}$ |
$1 + 18 x + 163 x^{2} + 738 x^{3} + 1681 x^{4}$ | |
Frobenius angles: | $\pm0.748059037948$, $\pm0.748059037948$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $15$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2601$ | $2832489$ | $4698279936$ | $8003936949129$ | $13419241769785401$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $60$ | $1684$ | $68166$ | $2832484$ | $115826700$ | $4750094158$ | $194755574220$ | $7984913939524$ | $327381982686486$ | $13422659338393204$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 15 curves (of which all are hyperelliptic):
- $y^2=10 x^6+39 x^5+27 x^4+5 x^3+13 x^2+33 x+39$
- $y^2=36 x^6+26 x^5+36 x^4+34 x^3+20 x^2+6 x+33$
- $y^2=26 x^6+27 x^5+36 x^4+27 x^3+21 x^2+22 x+24$
- $y^2=17 x^6+32 x^5+39 x^4+35 x^3+16 x^2+39 x+29$
- $y^2=28 x^6+27 x^5+18 x^4+6 x^3+40 x^2+24 x+30$
- $y^2=27 x^6+21 x^5+29 x^4+33 x^3+22 x^2+33 x+13$
- $y^2=26 x^6+24 x^5+5 x^4+38 x^3+x^2+19 x+13$
- $y^2=27 x^6+5 x^5+40 x^4+20 x^3+5 x^2+2 x+28$
- $y^2=16 x^6+25 x^5+33 x^4+21 x^3+24 x^2+2 x+12$
- $y^2=5 x^6+17 x^5+26 x^4+29 x^3+17 x^2+14 x+9$
- $y^2=32 x^6+6 x^5+30 x^4+13 x^3+3 x^2+14 x+2$
- $y^2=23 x^6+10 x^5+6 x^4+21 x^3+15 x^2+25 x+27$
- $y^2=26 x^6+14 x^5+40 x^4+26 x^3+38 x^2+28 x+28$
- $y^2=25 x^6+3 x^5+35 x^4+33 x^3+17 x^2+7 x+1$
- $y^2=8 x^6+4 x^5+5 x^4+31 x^3+20 x^2+23 x+20$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$The isogeny class factors as 1.41.j 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-83}) \)$)$ |
Base change
This is a primitive isogeny class.