Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 11 x + 73 x^{2} )^{2}$ |
$1 - 22 x + 267 x^{2} - 1606 x^{3} + 5329 x^{4}$ | |
Frobenius angles: | $\pm0.277387524567$, $\pm0.277387524567$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $47$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3969$ | $28676025$ | $152174889216$ | $807030088475625$ | $4297757139061247169$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $52$ | $5380$ | $391174$ | $28418308$ | $2073134932$ | $151333458190$ | $11047385446324$ | $806460004164868$ | $58871586697559062$ | $4297625835989992900$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 47 curves (of which all are hyperelliptic):
- $y^2=21 x^6+44 x^5+8 x^4+21 x^3+36 x^2+15 x+43$
- $y^2=5 x^6+50 x^5+58 x^4+42 x^3+33 x^2+23 x+11$
- $y^2=18 x^6+12 x^5+22 x^4+40 x^3+5 x^2+70 x+67$
- $y^2=59 x^6+3 x^5+14 x^4+56 x^3+63 x^2+6 x+20$
- $y^2=47 x^6+21 x^5+9 x^4+62 x^3+9 x^2+21 x+47$
- $y^2=11 x^6+60 x^5+29 x^4+23 x^3+65 x^2+43 x+2$
- $y^2=x^6+x^3+46$
- $y^2=21 x^6+27 x^5+67 x^4+58 x^3+70 x^2+25 x+30$
- $y^2=59 x^6+31 x^5+46 x^4+63 x^3+36 x^2+47 x+44$
- $y^2=45 x^6+25 x^5+29 x^4+9 x^3+13 x^2+65 x+21$
- $y^2=24 x^6+42 x^5+12 x^4+70 x^3+66 x^2+36 x+62$
- $y^2=66 x^6+37 x^5+57 x^4+10 x^3+41 x^2+2 x+17$
- $y^2=17 x^6+44 x^5+23 x^4+45 x^3+3 x^2+22 x+63$
- $y^2=12 x^6+58 x^5+61 x^4+42 x^3+18 x^2+21 x+69$
- $y^2=5 x^6+59 x^5+63 x^4+62 x^3+11 x^2+40 x+47$
- $y^2=15 x^6+45 x^5+8 x^4+45 x^3+46 x^2+5 x+40$
- $y^2=x^6+66 x^5+42 x^4+68 x^3+33 x^2+40 x+70$
- $y^2=13 x^6+62 x^5+49 x^4+16 x^3+x^2+47 x+59$
- $y^2=36 x^6+23 x^5+20 x^4+59 x^3+56 x^2+5$
- $y^2=34 x^6+65 x^5+44 x^4+21 x^3+63 x^2+2 x+60$
- and 27 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The isogeny class factors as 1.73.al 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-19}) \)$)$ |
Base change
This is a primitive isogeny class.