Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 15 x + 71 x^{2} )( 1 + 15 x + 71 x^{2} )$ |
$1 - 83 x^{2} + 5041 x^{4}$ | |
Frobenius angles: | $\pm0.150643965450$, $\pm0.849356034550$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $255$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4959$ | $24591681$ | $128100967344$ | $645915871265625$ | $3255243550936884279$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $72$ | $4876$ | $357912$ | $25418068$ | $1804229352$ | $128101650766$ | $9095120158392$ | $645753612501988$ | $45848500718449032$ | $3255243550863887356$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 255 curves (of which all are hyperelliptic):
- $y^2=42 x^6+56 x^5+67 x^4+21 x^3+65 x^2+43 x+54$
- $y^2=10 x^6+37 x^5+43 x^4+5 x^3+29 x^2+17 x+23$
- $y^2=63 x^6+10 x^5+60 x^4+50 x^3+12 x^2+7 x+13$
- $y^2=15 x^6+70 x^5+65 x^4+66 x^3+13 x^2+49 x+20$
- $y^2=42 x^6+33 x^5+5 x^4+63 x^3+41 x^2+43 x+67$
- $y^2=10 x^6+18 x^5+35 x^4+15 x^3+3 x^2+17 x+43$
- $y^2=13 x^6+62 x^5+8 x^4+39 x^3+35 x^2+21 x+12$
- $y^2=20 x^6+8 x^5+56 x^4+60 x^3+32 x^2+5 x+13$
- $y^2=26 x^6+42 x^5+19 x^4+53 x^3+2 x^2+61 x+68$
- $y^2=40 x^6+10 x^5+62 x^4+16 x^3+14 x^2+x+50$
- $y^2=61 x^6+32 x^5+46 x^4+16 x^3+36 x^2+65 x+25$
- $y^2=x^6+11 x^5+38 x^4+41 x^3+39 x^2+29 x+33$
- $y^2=25 x^6+63 x^5+9 x^4+9 x^3+30 x^2+56 x+69$
- $y^2=33 x^6+15 x^5+63 x^4+63 x^3+68 x^2+37 x+57$
- $y^2=59 x^6+33 x^5+41 x^4+29 x^3+5 x^2+35 x+44$
- $y^2=58 x^6+18 x^5+3 x^4+61 x^3+35 x^2+32 x+24$
- $y^2=37 x^6+5 x^5+58 x^4+4 x^3+56 x^2+51 x+16$
- $y^2=46 x^6+35 x^5+51 x^4+28 x^3+37 x^2+2 x+41$
- $y^2=8 x^6+54 x^5+63 x^4+10 x^3+29 x^2+24 x+66$
- $y^2=30 x^6+12 x^5+12 x^4+23 x^3+46 x^2+58 x+47$
- and 235 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$The isogeny class factors as 1.71.ap $\times$ 1.71.p and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{71^{2}}$ is 1.5041.adf 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-59}) \)$)$ |
Base change
This is a primitive isogeny class.