Show commands: SageMath
Rank
The elliptic curves in class 592.a have rank \(1\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 592.a do not have complex multiplication.Modular form 592.2.a.a
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 592.a
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
592.a1 | 592e3 | \([0, -1, 0, -29973, 2007325]\) | \(727057727488000/37\) | \(151552\) | \([]\) | \(432\) | \(0.91523\) | |
592.a2 | 592e2 | \([0, -1, 0, -373, 2813]\) | \(1404928000/50653\) | \(207474688\) | \([]\) | \(144\) | \(0.36592\) | |
592.a3 | 592e1 | \([0, -1, 0, -53, -131]\) | \(4096000/37\) | \(151552\) | \([]\) | \(48\) | \(-0.18338\) | \(\Gamma_0(N)\)-optimal |