Properties

Label 4-100352-1.1-c1e2-0-14
Degree $4$
Conductor $100352$
Sign $-1$
Analytic cond. $6.39853$
Root an. cond. $1.59045$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s − 6·9-s + 12·13-s + 2·25-s + 24·45-s − 7·49-s − 20·61-s − 48·65-s + 27·81-s − 4·101-s − 28·113-s − 72·117-s − 22·121-s + 28·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 82·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 1.78·5-s − 2·9-s + 3.32·13-s + 2/5·25-s + 3.57·45-s − 49-s − 2.56·61-s − 5.95·65-s + 3·81-s − 0.398·101-s − 2.63·113-s − 6.65·117-s − 2·121-s + 2.50·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 6.30·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 100352 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100352 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(100352\)    =    \(2^{11} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(6.39853\)
Root analytic conductor: \(1.59045\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 100352,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7$C_2$ \( 1 + p T^{2} \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.3.a_g
5$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \) 2.5.e_o
11$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.11.a_w
13$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \) 2.13.am_ck
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.17.a_be
19$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.19.a_bm
23$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.23.a_bu
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.29.a_abq
31$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.31.a_ck
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.37.a_cs
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.41.a_as
43$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.43.a_di
47$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.47.a_dq
53$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) 2.53.a_adm
59$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.59.a_eo
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \) 2.61.u_io
67$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.67.a_fe
71$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.71.a_fm
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.73.a_eg
79$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.79.a_gc
83$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.83.a_gk
89$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.89.a_da
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \) 2.97.a_afa
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.955386231165229198073332132052, −8.771392398326295721829819861779, −8.345357893193109848205355184463, −7.81663575443705708449207741292, −7.77199473906097062385997282225, −6.62808933612086279625365823883, −6.21664603313252085616146347555, −5.87146418848833687506982135026, −5.21491067832233438164314315088, −4.31344318158954137705495075068, −3.67478222653086463350186782835, −3.51581292263084701318927160501, −2.79060940321229954934356841383, −1.36200050793739601416696080977, 0, 1.36200050793739601416696080977, 2.79060940321229954934356841383, 3.51581292263084701318927160501, 3.67478222653086463350186782835, 4.31344318158954137705495075068, 5.21491067832233438164314315088, 5.87146418848833687506982135026, 6.21664603313252085616146347555, 6.62808933612086279625365823883, 7.77199473906097062385997282225, 7.81663575443705708449207741292, 8.345357893193109848205355184463, 8.771392398326295721829819861779, 8.955386231165229198073332132052

Graph of the $Z$-function along the critical line