| L(s)  = 1 | − 4·5-s         − 6·9-s         + 12·13-s                         + 2·25-s                                         + 24·45-s         − 7·49-s                         − 20·61-s         − 48·65-s                                 + 27·81-s                                         − 4·101-s                         − 28·113-s         − 72·117-s         − 22·121-s         + 28·125-s     + 127-s         + 131-s             + 137-s     + 139-s                     + 149-s     + 151-s             + 157-s             + 163-s         + 167-s     + 82·169-s         + 173-s             + 179-s     + 181-s  + ⋯ | 
| L(s)  = 1 | − 1.78·5-s         − 2·9-s         + 3.32·13-s                         + 2/5·25-s                                         + 3.57·45-s         − 49-s                         − 2.56·61-s         − 5.95·65-s                                 + 3·81-s                                         − 0.398·101-s                         − 2.63·113-s         − 6.65·117-s         − 2·121-s         + 2.50·125-s     + 0.0887·127-s         + 0.0873·131-s             + 0.0854·137-s     + 0.0848·139-s                     + 0.0819·149-s     + 0.0813·151-s             + 0.0798·157-s             + 0.0783·163-s         + 0.0773·167-s     + 6.30·169-s         + 0.0760·173-s             + 0.0747·179-s     + 0.0743·181-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 100352 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100352 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−8.955386231165229198073332132052, −8.771392398326295721829819861779, −8.345357893193109848205355184463, −7.81663575443705708449207741292, −7.77199473906097062385997282225, −6.62808933612086279625365823883, −6.21664603313252085616146347555, −5.87146418848833687506982135026, −5.21491067832233438164314315088, −4.31344318158954137705495075068, −3.67478222653086463350186782835, −3.51581292263084701318927160501, −2.79060940321229954934356841383, −1.36200050793739601416696080977, 0, 
1.36200050793739601416696080977, 2.79060940321229954934356841383, 3.51581292263084701318927160501, 3.67478222653086463350186782835, 4.31344318158954137705495075068, 5.21491067832233438164314315088, 5.87146418848833687506982135026, 6.21664603313252085616146347555, 6.62808933612086279625365823883, 7.77199473906097062385997282225, 7.81663575443705708449207741292, 8.345357893193109848205355184463, 8.771392398326295721829819861779, 8.955386231165229198073332132052
