Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 10 x + 61 x^{2} )^{2}$ |
| $1 + 20 x + 222 x^{2} + 1220 x^{3} + 3721 x^{4}$ | |
| Frobenius angles: | $\pm0.721142061624$, $\pm0.721142061624$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $49$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5184$ | $14017536$ | $51144727104$ | $191900067840000$ | $713310903511331904$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $82$ | $3766$ | $225322$ | $13859758$ | $844558402$ | $51519904486$ | $3142749846682$ | $191707271553118$ | $11694146079625522$ | $713342914323062806$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 49 curves (of which all are hyperelliptic):
- $y^2=3 x^6+29 x^5+48 x^3+29 x^2+34 x+41$
- $y^2=16 x^6+42 x^5+23 x^4+50 x^3+37 x^2+47 x+48$
- $y^2=8 x^6+10 x^5+53 x^4+12 x^3+50 x^2+17 x+37$
- $y^2=56 x^6+21 x^5+36 x^4+56 x^3+36 x^2+21 x+56$
- $y^2=54 x^6+43 x^4+43 x^2+54$
- $y^2=43 x^6+45 x^4+45 x^2+43$
- $y^2=48 x^6+20 x^4+20 x^2+48$
- $y^2=57 x^6+36 x^4+36 x^2+57$
- $y^2=56 x^6+12 x^5+32 x^4+55 x^3+38 x^2+56 x+46$
- $y^2=34 x^6+29 x^4+29 x^2+34$
- $y^2=25 x^6+44 x^5+10 x^4+36 x^3+x^2+36 x+36$
- $y^2=34 x^6+45 x^5+33 x^4+4 x^3+31 x^2+14 x+52$
- $y^2=7 x^6+47 x^5+21 x^4+32 x^3+56 x^2+17 x+8$
- $y^2=x^6+19 x^3+27$
- $y^2=20 x^6+12 x^5+44 x^4+36 x^3+43 x^2+x+52$
- $y^2=54 x^6+17 x^5+38 x^4+3 x^3+38 x^2+17 x+54$
- $y^2=3 x^6+3 x^5+49 x^4+16 x^3+39 x^2+56 x+36$
- $y^2=50 x^6+16 x^5+35 x^4+6 x^3+30 x^2+13 x+37$
- $y^2=39 x^6+57 x^5+18 x^4+19 x^3+18 x^2+57 x+39$
- $y^2=x^6+x^3+52$
- and 29 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The isogeny class factors as 1.61.k 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
Base change
This is a primitive isogeny class.