Properties

Label 2-74360-1.1-c1-0-14
Degree $2$
Conductor $74360$
Sign $-1$
Analytic cond. $593.767$
Root an. cond. $24.3673$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s − 4·7-s + 9-s − 11-s − 2·15-s + 5·17-s − 2·19-s − 8·21-s + 6·23-s + 25-s − 4·27-s + 31-s − 2·33-s + 4·35-s − 2·37-s − 2·41-s + 43-s − 45-s + 9·49-s + 10·51-s − 6·53-s + 55-s − 4·57-s − 7·59-s + 4·61-s − 4·63-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s − 1.51·7-s + 1/3·9-s − 0.301·11-s − 0.516·15-s + 1.21·17-s − 0.458·19-s − 1.74·21-s + 1.25·23-s + 1/5·25-s − 0.769·27-s + 0.179·31-s − 0.348·33-s + 0.676·35-s − 0.328·37-s − 0.312·41-s + 0.152·43-s − 0.149·45-s + 9/7·49-s + 1.40·51-s − 0.824·53-s + 0.134·55-s − 0.529·57-s − 0.911·59-s + 0.512·61-s − 0.503·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74360\)    =    \(2^{3} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(593.767\)
Root analytic conductor: \(24.3673\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 74360,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 11 T + p T^{2} \) 1.83.l
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.15814266720392, −14.03518727974968, −13.17789617115861, −12.92008955448262, −12.58088202832985, −11.91560793477563, −11.34892427949500, −10.71014015458692, −10.12869309906353, −9.710588792225171, −9.275864868062495, −8.681794422118543, −8.348584819850628, −7.645756950824508, −7.262566949701155, −6.690395474277741, −6.073382635890435, −5.499440755895265, −4.791134528377399, −4.021261402660905, −3.426055718275643, −3.099205126011570, −2.682830350666998, −1.822202527019703, −0.8624316996876890, 0, 0.8624316996876890, 1.822202527019703, 2.682830350666998, 3.099205126011570, 3.426055718275643, 4.021261402660905, 4.791134528377399, 5.499440755895265, 6.073382635890435, 6.690395474277741, 7.262566949701155, 7.645756950824508, 8.348584819850628, 8.681794422118543, 9.275864868062495, 9.710588792225171, 10.12869309906353, 10.71014015458692, 11.34892427949500, 11.91560793477563, 12.58088202832985, 12.92008955448262, 13.17789617115861, 14.03518727974968, 14.15814266720392

Graph of the $Z$-function along the critical line