![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(74360, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([0,0,0,0,0]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(74360, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([0,0,0,0,0]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(1,74360))
        pari:[g,chi] = znchar(Mod(1,74360))
         
     
    
  \(\chi_{74360}(1,\cdot)\)
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((18591,37181,44617,13521,25521)\) → \((1,1,1,1,1)\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) | \(31\) | 
    
    
      | \( \chi_{ 74360 }(1, a) \) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)