Invariants
| Base field: | $\F_{43}$ | 
| Dimension: | $1$ | 
| L-polynomial: | $1 - x + 43 x^{2}$ | 
| Frobenius angles: | $\pm0.475705518658$ | 
| Angle rank: | $1$ (numerical) | 
| Number field: | \(\Q(\sqrt{-19}) \) | 
| Galois group: | $C_2$ | 
| Jacobians: | $5$ | 
| Isomorphism classes: | 5 | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ | 
| Slopes: | $[0, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $43$ | $1935$ | $79636$ | $3415275$ | $146999413$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $43$ | $1935$ | $79636$ | $3415275$ | $146999413$ | $6321505680$ | $271819142071$ | $11688194675475$ | $502592583503308$ | $21611482525742175$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 5 curves (of which 0 are hyperelliptic):
- $y^2=x^3+34 x+34$
 - $y^2=x^3+7 x+7$
 - $y^2=x^3+21 x+42$
 - $y^2=x^3+9 x+9$
 - $y^2=x^3+3 x+6$
 
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-19}) \). | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 1.43.b | $2$ | (not in LMFDB) |