Invariants
Base field: | $\F_{89}$ |
Dimension: | $1$ |
L-polynomial: | $1 - 9 x + 89 x^{2}$ |
Frobenius angles: | $\pm0.341724512740$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-11}) \) |
Galois group: | $C_2$ |
Jacobians: | $5$ |
Isomorphism classes: | 5 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $1$ |
Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $81$ | $8019$ | $706644$ | $62748675$ | $5583968361$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $81$ | $8019$ | $706644$ | $62748675$ | $5583968361$ | $496979898624$ | $44231330471409$ | $3936588889803075$ | $350356404858140916$ | $31181719932837096579$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 5 curves (of which 0 are hyperelliptic):
- $y^2=x^3+3 x+3$
- $y^2=x^3+11 x+33$
- $y^2=x^3+82 x+82$
- $y^2=x^3+78 x+56$
- $y^2=x^3+38 x+25$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-11}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
1.89.j | $2$ | (not in LMFDB) |