Properties

Label 2-572e2-1.1-c1-0-125
Degree $2$
Conductor $327184$
Sign $-1$
Analytic cond. $2612.57$
Root an. cond. $51.1133$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 3·5-s + 4·7-s + 9-s + 6·15-s − 3·17-s − 2·19-s + 8·21-s + 6·23-s + 4·25-s − 4·27-s − 9·29-s + 2·31-s + 12·35-s + 7·37-s + 3·41-s − 4·43-s + 3·45-s − 6·47-s + 9·49-s − 6·51-s + 9·53-s − 4·57-s − 5·61-s + 4·63-s + 2·67-s + 12·69-s + ⋯
L(s)  = 1  + 1.15·3-s + 1.34·5-s + 1.51·7-s + 1/3·9-s + 1.54·15-s − 0.727·17-s − 0.458·19-s + 1.74·21-s + 1.25·23-s + 4/5·25-s − 0.769·27-s − 1.67·29-s + 0.359·31-s + 2.02·35-s + 1.15·37-s + 0.468·41-s − 0.609·43-s + 0.447·45-s − 0.875·47-s + 9/7·49-s − 0.840·51-s + 1.23·53-s − 0.529·57-s − 0.640·61-s + 0.503·63-s + 0.244·67-s + 1.44·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(327184\)    =    \(2^{4} \cdot 11^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(2612.57\)
Root analytic conductor: \(51.1133\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 327184,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 \)
13 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.04518401149662, −12.65836137561966, −11.72661265247149, −11.45056177058675, −10.96589147043980, −10.63104799345618, −9.953629768282217, −9.504325315175842, −9.149229414624557, −8.744675430501721, −8.305782356207046, −7.918449762066293, −7.342221778397637, −6.920171111864083, −6.272927062240473, −5.673751669273234, −5.370232897087525, −4.788588827195428, −4.237565277157654, −3.807006598458937, −2.863088724009964, −2.624915187470704, −2.049054947011970, −1.591547720728772, −1.191718577276700, 0, 1.191718577276700, 1.591547720728772, 2.049054947011970, 2.624915187470704, 2.863088724009964, 3.807006598458937, 4.237565277157654, 4.788588827195428, 5.370232897087525, 5.673751669273234, 6.272927062240473, 6.920171111864083, 7.342221778397637, 7.918449762066293, 8.305782356207046, 8.744675430501721, 9.149229414624557, 9.504325315175842, 9.953629768282217, 10.63104799345618, 10.96589147043980, 11.45056177058675, 11.72661265247149, 12.65836137561966, 13.04518401149662

Graph of the $Z$-function along the critical line