Properties

Label 2-55506-1.1-c1-0-36
Degree $2$
Conductor $55506$
Sign $-1$
Analytic cond. $443.217$
Root an. cond. $21.0527$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 4·5-s − 6-s − 8-s + 9-s − 4·10-s + 11-s + 12-s + 2·13-s + 4·15-s + 16-s − 2·17-s − 18-s − 2·19-s + 4·20-s − 22-s − 6·23-s − 24-s + 11·25-s − 2·26-s + 27-s − 4·30-s − 10·31-s − 32-s + 33-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 1.78·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 1.26·10-s + 0.301·11-s + 0.288·12-s + 0.554·13-s + 1.03·15-s + 1/4·16-s − 0.485·17-s − 0.235·18-s − 0.458·19-s + 0.894·20-s − 0.213·22-s − 1.25·23-s − 0.204·24-s + 11/5·25-s − 0.392·26-s + 0.192·27-s − 0.730·30-s − 1.79·31-s − 0.176·32-s + 0.174·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55506 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55506 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55506\)    =    \(2 \cdot 3 \cdot 11 \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(443.217\)
Root analytic conductor: \(21.0527\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 55506,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
11 \( 1 - T \)
29 \( 1 \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.77711726036158, −14.14678874387861, −13.57906628201990, −13.28010564287885, −12.75751058807057, −12.19031225571916, −11.41991934486779, −10.85059026507654, −10.46763779664252, −9.745377640202940, −9.627379419295678, −9.001561338596606, −8.559609094413820, −8.102769895980264, −7.227262979913388, −6.836491373311561, −6.070448651888014, −5.912761892318917, −5.174813056055327, −4.316610453381424, −3.686140421703705, −2.827916868958681, −2.279705704120218, −1.707317028516404, −1.280989087513553, 0, 1.280989087513553, 1.707317028516404, 2.279705704120218, 2.827916868958681, 3.686140421703705, 4.316610453381424, 5.174813056055327, 5.912761892318917, 6.070448651888014, 6.836491373311561, 7.227262979913388, 8.102769895980264, 8.559609094413820, 9.001561338596606, 9.627379419295678, 9.745377640202940, 10.46763779664252, 10.85059026507654, 11.41991934486779, 12.19031225571916, 12.75751058807057, 13.28010564287885, 13.57906628201990, 14.14678874387861, 14.77711726036158

Graph of the $Z$-function along the critical line