Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 4 x + 73 x^{2}$ |
| Frobenius angles: | $\pm0.424791481369$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-69}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $70$ | $5460$ | $389830$ | $28392000$ | $2072987350$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $70$ | $5460$ | $389830$ | $28392000$ | $2072987350$ | $151334344980$ | $11047405143670$ | $806460109728000$ | $58871586296009830$ | $4297625826752649300$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+43 x+69$
- $y^2=x^3+35 x+35$
- $y^2=x^3+9 x+9$
- $y^2=x^3+43 x+43$
- $y^2=x^3+27 x+62$
- $y^2=x^3+60 x+8$
- $y^2=x^3+63 x+23$
- $y^2=x^3+66 x+38$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-69}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.73.e | $2$ | (not in LMFDB) |