Properties

Label 1.31.k
Base field $\F_{31}$
Dimension $1$
$p$-rank $1$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{31}$
Dimension:  $1$
L-polynomial:  $1 + 10 x + 31 x^{2}$
Frobenius angles:  $\pm0.854999228987$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-6}) \)
Galois group:  $C_2$
Jacobians:  $2$
Isomorphism classes:  2
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $42$ $924$ $29862$ $924000$ $28622202$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $42$ $924$ $29862$ $924000$ $28622202$ $887558364$ $27512282742$ $852892656000$ $26439616247562$ $819628295936604$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 2 curves (of which 0 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{31}$.

Endomorphism algebra over $\F_{31}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-6}) \).

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.31.ak$2$(not in LMFDB)