| L(s)  = 1  |             − 4·7-s         − 3·11-s     − 4·13-s         − 3·17-s     − 4·19-s         + 6·23-s             − 6·29-s     − 8·31-s             + 8·37-s         + 6·41-s     + 43-s         − 12·47-s     + 9·49-s                     + 9·59-s     − 8·61-s             + 4·67-s         − 6·71-s     − 14·73-s         + 12·77-s     − 8·79-s         − 9·83-s             + 9·89-s     + 16·91-s             + 7·97-s         + 101-s     + 103-s         + 107-s  + ⋯ | 
 
| L(s)  = 1  |             − 1.51·7-s         − 0.904·11-s     − 1.10·13-s         − 0.727·17-s     − 0.917·19-s         + 1.25·23-s             − 1.11·29-s     − 1.43·31-s             + 1.31·37-s         + 0.937·41-s     + 0.152·43-s         − 1.75·47-s     + 9/7·49-s                     + 1.17·59-s     − 1.02·61-s             + 0.488·67-s         − 0.712·71-s     − 1.63·73-s         + 1.36·77-s     − 0.900·79-s         − 0.987·83-s             + 0.953·89-s     + 1.67·91-s             + 0.710·97-s         + 0.0995·101-s     + 0.0985·103-s         + 0.0966·107-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 \)  |    | 
 | 3 |  \( 1 \)  |    | 
 | 5 |  \( 1 \)  |    | 
| good | 7 |  \( 1 + 4 T + p T^{2} \)  |  1.7.e  | 
 | 11 |  \( 1 + 3 T + p T^{2} \)  |  1.11.d  | 
 | 13 |  \( 1 + 4 T + p T^{2} \)  |  1.13.e  | 
 | 17 |  \( 1 + 3 T + p T^{2} \)  |  1.17.d  | 
 | 19 |  \( 1 + 4 T + p T^{2} \)  |  1.19.e  | 
 | 23 |  \( 1 - 6 T + p T^{2} \)  |  1.23.ag  | 
 | 29 |  \( 1 + 6 T + p T^{2} \)  |  1.29.g  | 
 | 31 |  \( 1 + 8 T + p T^{2} \)  |  1.31.i  | 
 | 37 |  \( 1 - 8 T + p T^{2} \)  |  1.37.ai  | 
 | 41 |  \( 1 - 6 T + p T^{2} \)  |  1.41.ag  | 
 | 43 |  \( 1 - T + p T^{2} \)  |  1.43.ab  | 
 | 47 |  \( 1 + 12 T + p T^{2} \)  |  1.47.m  | 
 | 53 |  \( 1 + p T^{2} \)  |  1.53.a  | 
 | 59 |  \( 1 - 9 T + p T^{2} \)  |  1.59.aj  | 
 | 61 |  \( 1 + 8 T + p T^{2} \)  |  1.61.i  | 
 | 67 |  \( 1 - 4 T + p T^{2} \)  |  1.67.ae  | 
 | 71 |  \( 1 + 6 T + p T^{2} \)  |  1.71.g  | 
 | 73 |  \( 1 + 14 T + p T^{2} \)  |  1.73.o  | 
 | 79 |  \( 1 + 8 T + p T^{2} \)  |  1.79.i  | 
 | 83 |  \( 1 + 9 T + p T^{2} \)  |  1.83.j  | 
 | 89 |  \( 1 - 9 T + p T^{2} \)  |  1.89.aj  | 
 | 97 |  \( 1 - 7 T + p T^{2} \)  |  1.97.ah  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.35582890224136, −13.11167964837975, −12.84032937998952, −12.65257971994275, −11.77339871373245, −11.22932118140975, −10.89877331579179, −10.16621107012997, −9.972822118121600, −9.242320968118900, −9.079312810634582, −8.449811415216074, −7.558452518763458, −7.398719111589713, −6.846019796644321, −6.219422760503557, −5.848138530832417, −5.168663560224891, −4.646696773214769, −4.062727419244147, −3.362250046683918, −2.839544139583022, −2.396132131887028, −1.719601999274338, −0.5225622868916381, 0, 
0.5225622868916381, 1.719601999274338, 2.396132131887028, 2.839544139583022, 3.362250046683918, 4.062727419244147, 4.646696773214769, 5.168663560224891, 5.848138530832417, 6.219422760503557, 6.846019796644321, 7.398719111589713, 7.558452518763458, 8.449811415216074, 9.079312810634582, 9.242320968118900, 9.972822118121600, 10.16621107012997, 10.89877331579179, 11.22932118140975, 11.77339871373245, 12.65257971994275, 12.84032937998952, 13.11167964837975, 13.35582890224136