Properties

Label 2-33600-1.1-c1-0-122
Degree $2$
Conductor $33600$
Sign $-1$
Analytic cond. $268.297$
Root an. cond. $16.3797$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s + 9-s + 2·11-s + 6·13-s − 4·17-s − 6·19-s + 21-s − 8·23-s − 27-s − 6·29-s + 2·31-s − 2·33-s + 4·37-s − 6·39-s + 2·41-s − 4·43-s + 8·47-s + 49-s + 4·51-s + 6·53-s + 6·57-s − 8·59-s + 10·61-s − 63-s − 8·67-s + 8·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s + 1/3·9-s + 0.603·11-s + 1.66·13-s − 0.970·17-s − 1.37·19-s + 0.218·21-s − 1.66·23-s − 0.192·27-s − 1.11·29-s + 0.359·31-s − 0.348·33-s + 0.657·37-s − 0.960·39-s + 0.312·41-s − 0.609·43-s + 1.16·47-s + 1/7·49-s + 0.560·51-s + 0.824·53-s + 0.794·57-s − 1.04·59-s + 1.28·61-s − 0.125·63-s − 0.977·67-s + 0.963·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33600\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(268.297\)
Root analytic conductor: \(16.3797\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 33600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
good11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.19178016280306, −15.00390141658959, −13.97134709426354, −13.72795864137940, −13.10764254352306, −12.67132276778809, −12.07170697039864, −11.48480736201757, −11.02005391292346, −10.60813348938332, −10.02055962949792, −9.277726904941022, −8.874284120674952, −8.258684469969085, −7.713431872157961, −6.792206762133476, −6.354925743680902, −6.083763645533152, −5.412422549301469, −4.458326831145767, −3.926351222193520, −3.658009915904351, −2.399206287488704, −1.859341472240835, −0.9239038079759451, 0, 0.9239038079759451, 1.859341472240835, 2.399206287488704, 3.658009915904351, 3.926351222193520, 4.458326831145767, 5.412422549301469, 6.083763645533152, 6.354925743680902, 6.792206762133476, 7.713431872157961, 8.258684469969085, 8.874284120674952, 9.277726904941022, 10.02055962949792, 10.60813348938332, 11.02005391292346, 11.48480736201757, 12.07170697039864, 12.67132276778809, 13.10764254352306, 13.72795864137940, 13.97134709426354, 15.00390141658959, 15.19178016280306

Graph of the $Z$-function along the critical line