Invariants
Base field: | $\F_{71}$ |
Dimension: | $1$ |
L-polynomial: | $1 - 6 x + 71 x^{2}$ |
Frobenius angles: | $\pm0.384128557438$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-62}) \) |
Galois group: | $C_2$ |
Jacobians: | $8$ |
Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $1$ |
Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $66$ | $5148$ | $358974$ | $25410528$ | $1804147026$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $66$ | $5148$ | $358974$ | $25410528$ | $1804147026$ | $128099871900$ | $9095123531406$ | $645753580737408$ | $45848500775914914$ | $3255243547840769628$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+12 x+12$
- $y^2=x^3+30 x+30$
- $y^2=x^3+9 x+63$
- $y^2=x^3+60 x+60$
- $y^2=x^3+21 x+5$
- $y^2=x^3+45 x+31$
- $y^2=x^3+57 x+44$
- $y^2=x^3+51 x+51$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-62}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
1.71.g | $2$ | (not in LMFDB) |